Prediction of pathway-omics signature of histopathology images via attention-based deep learning in lung adenocarcinoma and squamous cell carcinoma

被引:0
|
作者
Chen, Han-Ru
Phan, Nam Nhut
Lu, Tzu-Pin
Lai, Liang-Chuan
Tsai, Mong-Hsun
Chattopadhyay, Amrita
Chuang, Eric Y.
机构
关键词
D O I
10.1158/1538-7445.AM2023-3177
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3177
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Digital Whole Slides-Based Deep Learning for the Prediction of Treatment Outcome in Head and Neck Squamous Cell Carcinoma
    Yu, H.
    Jing, D.
    Lu, W.
    Lu, W.
    Qiu, J.
    Shi, L.
    MEDICAL PHYSICS, 2020, 47 (06) : E528 - E528
  • [42] A deep learning-based integrative model for survival time prediction of head and neck squamous cell carcinoma patients
    Diksha Sharma
    Vivek Kumar Deepali
    Dharambir Garg
    Neelam Kashyap
    Neural Computing and Applications, 2022, 34 : 21353 - 21365
  • [43] Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
    Pirayesh, Zeynab
    Mohammad-Rahimi, Hossein
    Ghasemi, Nikoo
    Motamedian, Saeed-Reza
    Sadeghi, Terme Sarrafan
    Koohi, Hediye
    Rokhshad, Rata
    Lotfi, Shima Moradian
    Najafi, Anahita
    Alajaji, Shahd A.
    Khoury, Zaid H.
    Jessri, Maryam
    Sultan, Ahmed S.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2024, 53 (09) : 551 - 566
  • [44] Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images
    Fujima, Noriyuki
    Andreu-Arasa, V. Carlota
    Meibom, Sara K.
    Mercier, Gustavo A.
    Truong, Minh Tam
    Hirata, Kenji
    Yasuda, Koichi
    Kano, Satoshi
    Homma, Akihiro
    Kudo, Kohsuke
    Sakai, Osamu
    BMC CANCER, 2021, 21 (01)
  • [45] Deep learning prediction of esophageal squamous cell carcinoma invasion depth from arterial phase enhanced CT images: a binary classification approach
    Wu, Xiaoli
    Wu, Hao
    Miao, Shouliang
    Cao, Guoquan
    Su, Huang
    Pan, Jie
    Xu, Yilun
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [46] Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images
    Noriyuki Fujima
    V. Carlota Andreu-Arasa
    Sara K. Meibom
    Gustavo A. Mercier
    Minh Tam Truong
    Kenji Hirata
    Koichi Yasuda
    Satoshi Kano
    Akihiro Homma
    Kohsuke Kudo
    Osamu Sakai
    BMC Cancer, 21
  • [47] Deep learning prediction of esophageal squamous cell carcinoma invasion depth from arterial phase enhanced CT images: a binary classification approach
    Xiaoli Wu
    Hao Wu
    Shouliang Miao
    Guoquan Cao
    Huang Su
    Jie Pan
    Yilun Xu
    BMC Medical Informatics and Decision Making, 24
  • [48] Identifying 8-mRNAsi Based Signature for Predicting Survival in Patients With Head and Neck Squamous Cell Carcinoma via Machine Learning
    Tian, Yuxi
    Wang, Juncheng
    Qin, Chao
    Zhu, Gangcai
    Chen, Xuan
    Chen, Zhixiang
    Qin, Yuexiang
    Wei, Ming
    Li, Zhexuan
    Zhang, Xin
    Lv, Yunxia
    Cai, Gengming
    FRONTIERS IN GENETICS, 2020, 11
  • [49] Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma
    Hu, Yihuai
    Xie, Chenyi
    Yang, Hong
    Ho, Joshua W. K.
    Wen, Jing
    Han, Lujun
    Lam, Ka-On
    Wong, Ian Y. H.
    Law, Simon Y. K.
    Chiu, Keith W. H.
    Vardhanabhuti, Varut
    Fu, Jianhua
    RADIOTHERAPY AND ONCOLOGY, 2021, 154 : 6 - 13
  • [50] CT-based deep multi-label learning prediction model for outcome in patients with oropharyngeal squamous cell carcinoma
    Ma, Baoqiang
    Guo, Jiapan
    Zhai, Tian-Tian
    van der Schaaf, Arjen
    Steenbakkers, Roel J. H. M.
    van Dijk, Lisanne V.
    Both, Stefan
    Langendijk, Johannes A.
    Zhang, Weichuan
    Qiu, Bingjiang
    van Ooijen, Peter M. A.
    Sijtsema, Nanna M.
    MEDICAL PHYSICS, 2023, 50 (10) : 6190 - 6200