Enhanced dual branches network for arbitrary-scale image super-resolution

被引:3
|
作者
Li, Guangping [1 ]
Xiao, Huanling [1 ]
Liang, Dingkai [1 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
image processing; image reconstruction; image resolution;
D O I
10.1049/ell2.12689
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep convolutional neural networks (CNNs) are of great improvement for single image super-resolution (SISR). However, most existing SISR pre-trained models can only perform single image restoration and the upscale factors cannot be non-integers, which limits its application in real-world scenarios. In this letter, an enhanced dual branches network (EDBNet) in upsampling network is proposed to generate arbitrary-scale super-resolution (SR) images. Specifically, the authors design a scale-guidance upsampling module (SGU) by adding the scale factors and pixel-level features to guide the weights of convolution. The SGU module performs discriminant learning for each instance in the same batch. Extensive experiments on four benchmark datasets show that the proposed method can achieve superior SR results.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Enhanced implicit function-based network for arbitrary-scale image super-resolution
    Wen, Caizhen
    Yang, Zhijing
    Shi, Yukai
    Qing, Chunmei
    Cheng, Yongqiang
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [2] Arbitrary-Scale Image Super-Resolution via Degradation Perception
    Wan, Wenbo
    Wang, Zezhu
    Wang, Zhiyan
    Gu, Lingchen
    Sun, Jiande
    Wang, Qiang
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 666 - 676
  • [3] Activating More Information in Arbitrary-Scale Image Super-Resolution
    Zhao, Yaoqian
    Teng, Qizhi
    Chen, Honggang
    Zhang, Shujiang
    He, Xiaohai
    Li, Yi
    Sheriff, Ray E.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7946 - 7961
  • [4] Dual branches network for image super-resolution
    Matsune, Ai
    Cheng, Guoan
    Zhan, Shu
    [J]. ELECTRONICS LETTERS, 2019, 55 (23) : 1229 - 1230
  • [5] An Image Arbitrary-Scale Super-Resolution Network Using Frequency-domain Information
    Fang, Jing
    Yu, Yinbo
    Wang, Zhongyuan
    Ding, Xin
    Hu, Ruimin
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [6] UNCERTAINTY AWARE IMPLICIT IMAGE FUNCTION FOR ARBITRARY-SCALE SUPER-RESOLUTION
    Jena, Swastik
    Panda, Saptarshi
    Balabantaray, Bunil Kumar
    Nayak, Rajashree
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2440 - 2444
  • [7] Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
    Yao, Jie-En
    Tsao, Li-Yuan
    Lo, Yi-Chen
    Tseng, Roy
    Chang, Chia-Che
    Lee, Chun-Yi
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1776 - 1785
  • [8] ADAPTIVE LOCAL IMPLICIT IMAGE FUNCTION FOR ARBITRARY-SCALE SUPER-RESOLUTION
    Li, Hongwei
    Dai, Tao
    Li, Yiming
    Zou, Xueyi
    Xia, Shu-Tao
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4033 - 4037
  • [9] CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution
    Cao, Jiezhang
    Wang, Qin
    Xian, Yongqin
    Li, Yawei
    Ni, Bingbing
    Pi, Zhiming
    Zhang, Kai
    Zhang, Yulun
    Timofte, Radu
    Van Gool, Luc
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1796 - 1807
  • [10] DuDoINet: Dual-Domain Implicit Network for Multi-Modality MR Image Arbitrary-scale Super-Resolution
    Li, Guangyuan
    Xing, Wei
    Zhao, Lei
    Lan, Zehua
    Zhang, Zhanjie
    Sun, Jiakai
    Yin, Haolin
    Lin, Huaizhong
    Lin, Zhijie
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7335 - 7344