Activating More Information in Arbitrary-Scale Image Super-Resolution

被引:0
|
作者
Zhao, Yaoqian [1 ,2 ]
Teng, Qizhi [1 ]
Chen, Honggang [1 ,3 ,4 ]
Zhang, Shujiang [5 ]
He, Xiaohai [1 ]
Li, Yi [6 ]
Sheriff, Ray E. [7 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
[3] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
[4] Yunan Univ, Yunnan Key Lab Software Engn, Kunming 650600, Peoples R China
[5] Enjoyor Technol Co Ltd, Zhejiang Intelligent Transportat Engn Technol Res, Hangzhou 311400, Peoples R China
[6] DI Sinma Sichuan Machinery Co Ltd, Suining 629200, Peoples R China
[7] Edge Hill Univ, Dept Comp Sci, Ormskirk L39 4QP, England
基金
中国国家自然科学基金;
关键词
Super-resolution; arbitrary-scale; scale-aware; local feature adaptation; dynamic convolution; deformable convolution; INTERPOLATION; NETWORK;
D O I
10.1109/TMM.2024.3373257
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-image super-resolution (SISR) has experienced vigorous growth with the rapid development of deep learning. However, handling arbitrary scales (e.g., integers, non-integers, or asymmetric) using a single model remains a challenging task. Existing super-resolution (SR) networks commonly employ static convolutions during feature extraction, which cannot effectively perceive changes in scales. Moreover, these continuous-scale upsampling modules only utilize the scale factors, without considering the diversity of local features. To activate more information for better reconstruction, two plug-in and compatible modules for fixed-scale networks are designed to perform arbitrary-scale SR tasks. Firstly, we design a Scale-aware Local Feature Adaptation Module (SLFAM), which adaptively adjusts the attention weights of dynamic filters based on the local features and scales. It enables the network to possess stronger representation capabilities. Then we propose a Local Feature Adaptation Upsampling Module (LFAUM), which combines scales and local features to perform arbitrary-scale reconstruction. It allows the upsampling to adapt to local structures. Besides, deformable convolution is utilized letting more information to be activated in the reconstruction, enabling the network to better adapt to the texture features. Extensive experiments on various benchmark datasets demonstrate that integrating the proposed modules into a fixed-scale SR network enables it to achieve satisfactory results with non-integer or asymmetric scales while maintaining advanced performance with integer scales.
引用
收藏
页码:7946 / 7961
页数:16
相关论文
共 50 条
  • [1] Arbitrary-Scale Image Super-Resolution via Degradation Perception
    Wan, Wenbo
    Wang, Zezhu
    Wang, Zhiyan
    Gu, Lingchen
    Sun, Jiande
    Wang, Qiang
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 666 - 676
  • [2] An Image Arbitrary-Scale Super-Resolution Network Using Frequency-domain Information
    Fang, Jing
    Yu, Yinbo
    Wang, Zhongyuan
    Ding, Xin
    Hu, Ruimin
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [3] Enhanced dual branches network for arbitrary-scale image super-resolution
    Li, Guangping
    Xiao, Huanling
    Liang, Dingkai
    [J]. ELECTRONICS LETTERS, 2023, 59 (01)
  • [4] UNCERTAINTY AWARE IMPLICIT IMAGE FUNCTION FOR ARBITRARY-SCALE SUPER-RESOLUTION
    Jena, Swastik
    Panda, Saptarshi
    Balabantaray, Bunil Kumar
    Nayak, Rajashree
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2440 - 2444
  • [5] Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
    Yao, Jie-En
    Tsao, Li-Yuan
    Lo, Yi-Chen
    Tseng, Roy
    Chang, Chia-Che
    Lee, Chun-Yi
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1776 - 1785
  • [6] ADAPTIVE LOCAL IMPLICIT IMAGE FUNCTION FOR ARBITRARY-SCALE SUPER-RESOLUTION
    Li, Hongwei
    Dai, Tao
    Li, Yiming
    Zou, Xueyi
    Xia, Shu-Tao
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4033 - 4037
  • [7] Deep Arbitrary-Scale Image Super-Resolution via Scale-Equivariance Pursuit
    Wang, Xiaohang
    Chen, Xuanhong
    Ni, Bingbing
    Wang, Hang
    Tong, Zhengyan
    Liu, Yutian
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1786 - 1795
  • [8] Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution
    Chen, Hao-Wei
    Xu, Yu-Syuan
    Hong, Min-Fong
    Tsai, Yi-Min
    Kuo, Hsien-Kai
    Lee, Chun-Yi
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 18257 - 18267
  • [9] Enhanced implicit function-based network for arbitrary-scale image super-resolution
    Wen, Caizhen
    Yang, Zhijing
    Shi, Yukai
    Qing, Chunmei
    Cheng, Yongqiang
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [10] SQformer: Spectral-Query Transformer for Hyperspectral Image Arbitrary-Scale Super-Resolution
    Jiang, Shuguo
    Li, Nanying
    Xu, Meng
    Zhang, Shuyu
    Jia, Sen
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62