Strong invariance principles for ergodic Markov processes

被引:1
|
作者
Pengel, Ardjen [1 ]
Bierkens, Joris [1 ]
机构
[1] Delft Univ Technol Mekelweg 4, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, Netherlands
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
基金
荷兰研究理事会;
关键词
Strong invariance principle; piecewise determin- istic Markov processes; asymptotic variance estimation; SPECTRAL VARIANCE ESTIMATORS; WIDTH OUTPUT ANALYSIS; CHAIN MONTE-CARLO; STRONG CONSISTENCY; ADDITIVE-FUNCTIONALS; GEOMETRIC ERGODICITY; LIMIT-THEOREMS; PARTIAL-SUMS; BATCH-MEANS; SIMULATION;
D O I
10.1214/23-EJS2199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Strong invariance principles describe the error term of a Brownian approximation to the partial sums of a stochastic process. While these strong approximation results have many applications, results for continuoustime settings have been limited. In this paper, we obtain strong invariance principles for a broad class of ergodic Markov processes. Strong invariance principles provide a unified framework for analysing commonly used estimators of the asymptotic variance in settings with a dependence structure. We demonstrate how this can be used to analyse the batch means method for simulation output of Piecewise Deterministic Monte Carlo samplers. We also derive a fluctuation result for additive functionals of ergodic diffusions using our strong approximation results.
引用
收藏
页码:191 / 246
页数:56
相关论文
共 50 条