Re-analysis and meta-analysis of summary statistics from gene-environment interaction studies

被引:0
|
作者
Pham, Duy T. [1 ]
Westerman, Kenneth E. [2 ,3 ,4 ]
Pan, Cong [1 ]
Chen, Ling [2 ,3 ]
Srinivasan, Shylaja [5 ]
Isganaitis, Elvira [6 ]
Vajravelu, Mary Ellen [7 ]
Bacha, Fida [8 ]
Chernausek, Steve [9 ]
Gubitosi-Klug, Rose [10 ]
Divers, Jasmin [11 ]
Pihoker, Catherine [12 ]
Marcovina, Santica M. [13 ]
Manning, Alisa K. [2 ,3 ,4 ]
Chen, Han [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Dept Epidemiol, 1200 Pressler St,RAS E-517, Houston, TX 77030 USA
[2] Massachusetts Gen Hosp, Clin & Translat Epidemiol Unit, Mongan Inst, Dept Med, Boston, MA 02114 USA
[3] Broad Inst MIT & Harvard, Metab Program, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[5] Univ Calif Davis, Dept Pediat, Sacramento, CA 94158 USA
[6] Joslin Diabet Ctr, Res Div, Boston, MA 02215 USA
[7] Univ Pittsburgh, Sch Med, Dept Pediat, Pittsburgh, PA 15224 USA
[8] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[9] Univ Oklahoma, Dept Pediat, Coll Med, Oklahoma City, OK 73117 USA
[10] Case Western Reserve Univ, Dept Pediat, Cleveland, OH 44106 USA
[11] NYU, Dept Fdn Med, Dept Med, New York, NY 10016 USA
[12] Univ Washington, Sch Med, Dept Pediat, Seattle, WA 98105 USA
[13] Univ Washington, Dept Med, Northwest Lipid Metab & Diabet Res Labs, Seattle, WA 98105 USA
基金
美国国家卫生研究院;
关键词
ASSOCIATION; YOUTH;
D O I
10.1093/bioinformatics/btad730
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Summary statistics from genome-wide association studies enable many valuable downstream analyses that are more efficient than individual-level data analysis while also reducing privacy concerns. As growing sample sizes enable better-powered analysis of gene-environment interactions, there is a need for gene-environment interaction-specific methods that manipulate and use summary statistics.Results We introduce two tools to facilitate such analysis, with a focus on statistical models containing multiple gene-exposure and/or gene-covariate interaction terms. REGEM (RE-analysis of GEM summary statistics) uses summary statistics from a single, multi-exposure genome-wide interaction study to derive analogous sets of summary statistics with arbitrary sets of exposures and interaction covariate adjustments. METAGEM (META-analysis of GEM summary statistics) extends current fixed-effects meta-analysis models to incorporate multiple exposures from multiple studies. We demonstrate the value and efficiency of these tools by exploring alternative methods of accounting for ancestry-related population stratification in genome-wide interaction study in the UK Biobank as well as by conducting a multi-exposure genome-wide interaction study meta-analysis in cohorts from the diabetes-focused ProDiGY consortium. These programs help to maximize the value of summary statistics from diverse and complex gene-environment interaction studies.Availability and implementation REGEM and METAGEM are open-source projects freely available at https://github.com/large-scale-gxe-methods/REGEM and https://github.com/large-scale-gxe-methods/METAGEM.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Case-Control Studies of Gene-Environment Interaction: Bayesian Design and Analysis
    Mukherjee, Bhramar
    Ahn, Jaeil
    Gruber, Stephen B.
    Ghosh, Malay
    Chatterjee, Nilanjan
    BIOMETRICS, 2010, 66 (03) : 934 - 948
  • [32] MAOA, maltreatment, and gene-environment interaction predicting children's mental health:: new evidence and a meta-analysis
    Kim-Cohen, J.
    Caspi, A.
    Taylor, A.
    Williams, B.
    Newcombe, R.
    Craig, I. W.
    Moffitt, T. E.
    MOLECULAR PSYCHIATRY, 2006, 11 (10) : 903 - 913
  • [33] Assessing moderating effect in meta-analysis: a re-analysis of top management support studies and suggestions for researchers
    Hwang, Mark I.
    Schmidt, Frank L.
    EUROPEAN JOURNAL OF INFORMATION SYSTEMS, 2011, 20 (06) : 693 - 702
  • [34] BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction
    Zhao, Mingzhe
    Chen, Lu
    Yang, Jiarun
    Han, Dong
    Fang, Deyu
    Qiu, Xiaohui
    Yang, Xiuxian
    Qiao, Zhengxue
    Ma, Jingsong
    Wang, Lin
    Jiang, Shixiang
    Song, Xuejia
    Zhou, Jiawei
    Zhang, Jian
    Chen, Mingqi
    Qi, Dong
    Yang, Yanjie
    Pan, Hui
    JOURNAL OF AFFECTIVE DISORDERS, 2018, 227 : 226 - 235
  • [35] Review of Statistical Methods for Gene-Environment Interaction Analysis
    Han, Summer S.
    Chatterjee, Nilanjan
    CURRENT EPIDEMIOLOGY REPORTS, 2018, 5 (01) : 39 - 45
  • [36] Gene-environment interaction analysis under the Cox model
    Fang, Kuangnan
    Li, Jingmao
    Xu, Yaqing
    Ma, Shuangge
    Zhang, Qingzhao
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (06) : 931 - 948
  • [37] Information-guided Gene-environment Interaction Analysis
    Ma, Shuangge
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 773 - 773
  • [38] Impact of Population Stratification on Gene-Environment Interaction Analysis
    Viktorova, Elena
    Sohns, Melanie
    Bickeboller, Heike
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 144 - 144
  • [39] GENE-ENVIRONMENT INTERACTION AND PATH ANALYSIS OF FAMILY RESEMBLANCE
    RAO, DC
    AMERICAN JOURNAL OF HUMAN GENETICS, 1974, 26 (06) : A70 - A70
  • [40] Review of Statistical Methods for Gene-Environment Interaction Analysis
    Summer S. Han
    Nilanjan Chatterjee
    Current Epidemiology Reports, 2018, 5 : 39 - 45