Re-analysis and meta-analysis of summary statistics from gene-environment interaction studies

被引:0
|
作者
Pham, Duy T. [1 ]
Westerman, Kenneth E. [2 ,3 ,4 ]
Pan, Cong [1 ]
Chen, Ling [2 ,3 ]
Srinivasan, Shylaja [5 ]
Isganaitis, Elvira [6 ]
Vajravelu, Mary Ellen [7 ]
Bacha, Fida [8 ]
Chernausek, Steve [9 ]
Gubitosi-Klug, Rose [10 ]
Divers, Jasmin [11 ]
Pihoker, Catherine [12 ]
Marcovina, Santica M. [13 ]
Manning, Alisa K. [2 ,3 ,4 ]
Chen, Han [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Dept Epidemiol, 1200 Pressler St,RAS E-517, Houston, TX 77030 USA
[2] Massachusetts Gen Hosp, Clin & Translat Epidemiol Unit, Mongan Inst, Dept Med, Boston, MA 02114 USA
[3] Broad Inst MIT & Harvard, Metab Program, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[5] Univ Calif Davis, Dept Pediat, Sacramento, CA 94158 USA
[6] Joslin Diabet Ctr, Res Div, Boston, MA 02215 USA
[7] Univ Pittsburgh, Sch Med, Dept Pediat, Pittsburgh, PA 15224 USA
[8] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[9] Univ Oklahoma, Dept Pediat, Coll Med, Oklahoma City, OK 73117 USA
[10] Case Western Reserve Univ, Dept Pediat, Cleveland, OH 44106 USA
[11] NYU, Dept Fdn Med, Dept Med, New York, NY 10016 USA
[12] Univ Washington, Sch Med, Dept Pediat, Seattle, WA 98105 USA
[13] Univ Washington, Dept Med, Northwest Lipid Metab & Diabet Res Labs, Seattle, WA 98105 USA
基金
美国国家卫生研究院;
关键词
ASSOCIATION; YOUTH;
D O I
10.1093/bioinformatics/btad730
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Summary statistics from genome-wide association studies enable many valuable downstream analyses that are more efficient than individual-level data analysis while also reducing privacy concerns. As growing sample sizes enable better-powered analysis of gene-environment interactions, there is a need for gene-environment interaction-specific methods that manipulate and use summary statistics.Results We introduce two tools to facilitate such analysis, with a focus on statistical models containing multiple gene-exposure and/or gene-covariate interaction terms. REGEM (RE-analysis of GEM summary statistics) uses summary statistics from a single, multi-exposure genome-wide interaction study to derive analogous sets of summary statistics with arbitrary sets of exposures and interaction covariate adjustments. METAGEM (META-analysis of GEM summary statistics) extends current fixed-effects meta-analysis models to incorporate multiple exposures from multiple studies. We demonstrate the value and efficiency of these tools by exploring alternative methods of accounting for ancestry-related population stratification in genome-wide interaction study in the UK Biobank as well as by conducting a multi-exposure genome-wide interaction study meta-analysis in cohorts from the diabetes-focused ProDiGY consortium. These programs help to maximize the value of summary statistics from diverse and complex gene-environment interaction studies.Availability and implementation REGEM and METAGEM are open-source projects freely available at https://github.com/large-scale-gxe-methods/REGEM and https://github.com/large-scale-gxe-methods/METAGEM.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Meta-analysis of gene-environment interaction exploiting gene-environment independence across multiple case-control studies
    Estes, Jason P.
    Rice, John D.
    Li, Shi
    Stringham, Heather M.
    Boehnke, Michael
    Mukherjee, Bhramar
    STATISTICS IN MEDICINE, 2017, 36 (24) : 3895 - 3909
  • [2] Gene-Gene and Gene-Environment Interactions in Meta-Analysis of Genetic Association Studies
    Lin, Chin
    Chu, Chi-Ming
    Lin, John
    Yang, Hsin-Yi
    Su, Sui-Lung
    PLOS ONE, 2015, 10 (04):
  • [3] MAOA, Childhood Maltreatment, and Antisocial Behavior: Meta-analysis of a Gene-Environment Interaction
    Byrd, Amy L.
    Manuck, Stephen B.
    BIOLOGICAL PSYCHIATRY, 2014, 75 (01) : 9 - 17
  • [4] Oral clefts, maternal smoking, and TGFA: A meta-analysis of gene-environment interaction
    Zeiger, JS
    Beaty, TH
    Liang, KY
    CLEFT PALATE-CRANIOFACIAL JOURNAL, 2005, 42 (01): : 58 - 63
  • [5] Meta-analysis of gene-environment interactions in developmental psychopathology
    Taylor, Alan
    Kim-Cohen, Julia
    DEVELOPMENT AND PSYCHOPATHOLOGY, 2007, 19 (04) : 1029 - 1037
  • [6] Genome Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects
    Aschard, Hugues
    Hancock, Dana B.
    London, Stephanie J.
    Kraft, Peter
    GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 918 - 919
  • [7] Phytodolor® in Musculoskeletal Disorders: Re-Analysis and Meta-Analysis
    Uehleke, Bernhard
    Brignoli, Reto
    Rostock, Matthias
    Saller, Reinhard
    Melzer, Joerg
    FORSCHENDE KOMPLEMENTARMEDIZIN, 2011, 18 (05): : 249 - 256
  • [8] Meta-Analysis of Gene-Environment Interaction: Joint Estimation of SNP and SNP x Environment Regression Coefficients
    Manning, Alisa K.
    LaValley, Michael
    Liu, Ching-Ti
    Rice, Kenneth
    An, Ping
    Liu, Yongmei
    Miljkovic, Iva
    Rasmussen-Torvik, Laura
    Harris, Tamara B.
    Province, Michael A.
    Borecki, Ingrid B.
    Florez, Jose C.
    Meigs, James B.
    Cupples, L. Adrienne
    Dupuis, Josee
    GENETIC EPIDEMIOLOGY, 2011, 35 (01) : 11 - 18
  • [9] Bias in the case-only design applied to studies of gene-environment and gene-gene interaction: a systematic review and meta-analysis
    Dennis, Jessica
    Hawken, Steven
    Krewski, Daniel
    Birkett, Nick
    Gheorghe, Mihaela
    Frei, Julia
    McKeown-Eyssen, Gail
    Little, Julian
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (05) : 1329 - 1341
  • [10] Gene-environment interaction and association analysis
    Purcell, S
    BEHAVIOR GENETICS, 2004, 34 (06) : 657 - 657