Sixteen-Year Longitudinal Evaluation of Blood-Based DNA Methylation Biomarkers for Early Prediction of Alzheimer's Disease

被引:1
|
作者
Hackenhaar, Fernanda Schafer [1 ,2 ]
Josefsson, Maria [2 ,3 ,4 ]
Adolfsson, Annelie Nordin [5 ]
Landfors, Mattias [6 ]
Kauppi, Karolina [1 ,10 ]
Porter, Tenielle [7 ,8 ,9 ]
Milicic, Lidija [7 ,8 ]
Laws, Simon M. [7 ,8 ,9 ]
Hultdin, Magnus [6 ]
Adolfsson, Rolf [5 ]
Degerman, Sofie [6 ,11 ]
Pudas, Sara [1 ,2 ]
机构
[1] Umea Univ, Dept Integrat Med Biol, Umea, Sweden
[2] Umea Univ, Umea Ctr Funct Brain Imaging, Umea, Sweden
[3] Umea Univ, Dept Stat, USBE, Umea, Sweden
[4] Umea Univ, Ctr Ageing & Demog Res, Umea, Sweden
[5] Umea Univ, Dept Clin Sci, Umea, Sweden
[6] Umea Univ, Dept Med Biosci, Pathol, Umea, Sweden
[7] Edith Cowan Univ, Ctr Precis Hlth, Joondalup, WA, Australia
[8] Edith Cowan Univ, Sch Med & Hlth Sci, Collaborat Genom & Translat Grp, Joondalup, WA, Australia
[9] Curtin Univ, Curtin Med Sch, Bentley, WA, Australia
[10] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[11] Umea Univ, Dept Clin Microbiol, Umea, Sweden
基金
瑞典研究理事会; 英国医学研究理事会;
关键词
Alzheimer's disease; biomarkers; DNA methylation; epigenomics; longitudinal studies; LIFE-STYLE AIBL; PROSPECTIVE COHORT; PERIPHERAL-BLOOD; AGE; MEMORY; HEALTH; WIDE; ASSOCIATION; DIAGNOSIS; DEMENTIA;
D O I
10.3233/JAD-230039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: DNA methylation (DNAm), an epigenetic mark reflecting both inherited and environmental influences, has shown promise for Alzheimer's disease (AD) prediction. Objective: Testing long-term predictive ability (>15 years) of existing DNAm-based epigenetic age acceleration (EAA) measures and identifying novel early blood-based DNAm AD-prediction biomarkers. Methods: EAA measures calculated from Illumina EPIC data from blood were tested with linear mixed-effects models (LMMs) in a longitudinal case-control sample (50 late-onset AD cases; 51 matched controls) with prospective data up to 16 years before clinical onset, and post-onset follow-up. NovelDNAmbiomarkers were generated with epigenome-wide LMMs, and Sparse Partial Least Squares Discriminant Analysis applied at pre- (10-16 years), and post-AD-onset time-points. Results: EAA did not differentiate cases from controls during the follow-up time (p > 0.05). Three new DNA biomarkers showed in-sample predictive ability on average 8 years pre-onset, after adjustment for age, sex, and white blood cell proportions (p-values: 0.022-<0.00001). Our longitudinally-derived panel replicated nominally (p = 0.012) in an external cohort (n = 146 cases, 324 controls). However, its effect size and discriminatory accuracy were limited compared to APOE epsilon 4-carriership (OR = 1.38 per 1 SD DNAmscore increase versus OR= 13.58 for epsilon 4-allele carriage; AUCs = 77.2% versus 87.0%). Literature review showed low overlap (n = 4) across 3275 AD-associated CpGs from 8 published studies, and no overlap with our identified CpGs. Conclusion: The limited predictive value of EAA for AD extends prior findings by considering a longer follow-up time, and with appropriate control for age, sex, APOE, and blood-cell proportions. Results also highlight challenges with replicating discriminatory or predictive CpGs across studies.
引用
收藏
页码:1443 / 1464
页数:22
相关论文
共 50 条
  • [31] Blood-based biomarkers in Alzheimer's disease: a mini-review
    Padala, Sanjana P.
    Newhouse, Paul A.
    METABOLIC BRAIN DISEASE, 2023, 38 (01) : 185 - 193
  • [32] Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview
    Varesi, Angelica
    Carrara, Adelaide
    Pires, Vitor Gomes
    Floris, Valentina
    Pierella, Elisa
    Savioli, Gabriele
    Prasad, Sakshi
    Esposito, Ciro
    Ricevuti, Giovanni
    Chirumbolo, Salvatore
    Pascale, Alessia
    CELLS, 2022, 11 (08)
  • [33] Recommendations for clinical implementation of blood-based biomarkers for Alzheimer's disease
    Mielke, Michelle M.
    Anderson, Matthew
    Ashford, J. Wesson
    Jeromin, Andreas
    Lin, Pei-Jung
    Rosen, Allyson
    Tyrone, Jamie
    Vandevrede, Lawren
    Willis, Deanna R.
    Hansson, Oskar
    Khachaturian, Ara S.
    Schindler, Suzanne E.
    Weiss, Joan
    Batrla, Richard
    Bozeat, Sasha
    Dwyer, John R.
    Holzapfel, Drew
    Jones, Daryl Rhys
    Murray, James F.
    Partrick, Katherine A.
    Scholler, Emily
    Vradenburg, George
    Young, Dylan
    Braunstein, Joel B.
    Burnham, Samantha C.
    de Oliveira, Fabricio Ferreira
    Hu, Yan Helen
    Mattke, Soeren
    Merali, Zul
    Monane, Mark
    Sabbagh, Marwan Noel
    Shobin, Eli
    Weiner, Michael
    Udeh-Momoh, Chinedu T.
    ALZHEIMERS & DEMENTIA, 2024, 20 (11) : 8216 - 8224
  • [34] Blood-based biomarkers in Alzheimer's disease: Future directions for implementation
    Suridjan, Ivonne
    van der Flier, Wiesje M.
    Monsch, Andreas U.
    Burnie, Nerida
    Baldor, Robert
    Sabbagh, Marwan
    Vilaseca, Josep
    Cai, Dongming
    Carboni, Margherita
    Lah, James J.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2023, 15 (04)
  • [35] Alzheimer's disease and blood-based biomarkers - potential contexts of use
    Zverova, Martina
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2018, 14 : 1877 - 1882
  • [36] Blood-based biomarkers in Alzheimer’s disease: a mini-review
    Sanjana P. Padala
    Paul A. Newhouse
    Metabolic Brain Disease, 2023, 38 : 185 - 193
  • [37] Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road
    Manzine, Patricia R.
    Vatanabe, Izabela P.
    Peron, Rafaela
    Grigoli, Marina M.
    Pedroso, Renata, V
    Nascimento, Carla M. C.
    Cominetti, Marcia R.
    CURRENT PHARMACEUTICAL DESIGN, 2020, 26 (12) : 1300 - 1315
  • [38] Blood-based biomarkers of Alzheimer's disease and incident dementia in the community
    Grande, Giulia
    Valletta, Martina
    Rizzuto, Debora
    Xia, Xin
    Qiu, Chengxuan
    Orsini, Nicola
    Dale, Matilda
    Andersson, Sarah
    Fredolini, Claudia
    Winblad, Bengt
    Laukka, Erika J.
    Fratiglioni, Laura
    Vetrano, Davide L.
    NATURE MEDICINE, 2025,
  • [39] Development of Alzheimer's Disease Biomarkers: From CSF- to Blood-Based Biomarkers
    Mankhong, Sakulrat
    Kim, Sujin
    Lee, Seongju
    Kwak, Hyo-Bum
    Park, Dong-Ho
    Joa, Kyung-Lim
    Kang, Ju-Hee
    BIOMEDICINES, 2022, 10 (04)
  • [40] Blood-Based Protein Biomarkers for Diagnosis of Alzheimer Disease
    Doecke, James D.
    Laws, Simon M.
    Faux, Noel G.
    Wilson, William
    Burnham, Samantha C.
    Lam, Chiou-Peng
    Mondal, Alinda
    Bedo, Justin
    Bush, Ashley I.
    Brown, Belinda
    De Ruyck, Karl
    Ellis, Kathryn A.
    Fowler, Christopher
    Gupta, Veer B.
    Head, Richard
    Macaulay, S. Lance
    Pertile, Kelly
    Rowe, Christopher C.
    Rembach, Alan
    Rodrigues, Mark
    Rumble, Rebecca
    Szoeke, Cassandra
    Taddei, Kevin
    Taddei, Tania
    Trounson, Brett
    Ames, David
    Masters, Colin L.
    Martins, Ralph N.
    ARCHIVES OF NEUROLOGY, 2012, 69 (10) : 1318 - 1325