Confidence intervals for a ratio of percentiles of location-scale distributions

被引:0
|
作者
Krishnamoorthy, K. [1 ]
Chakraberty, Saptarshi [1 ]
机构
[1] Univ Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
Coverage probability; Exact test; Fiducial test; Log location-scale; Precision; MAXIMUM-LIKELIHOOD-ESTIMATION; GAMMA-DISTRIBUTION; PREDICTION LIMITS;
D O I
10.1016/j.jspi.2023.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of estimating a ratio of percentiles of two independent location-scale distributions is considered. A fiducial approach is proposed and described in details for the normal, lognormal, two-parameter exponential and Weibull distributions. For the normal case, the fiducial confidence intervals (CIs) turn out to be exact when the variances are equal. Procedures for constructing CIs for ratio of percentiles involving two-parameter exponential distributions and Weibull distributions are given with computational details. The fiducial methods can be readily extended to the case where the samples are type II censored. The methods are illustrated using real-world data sets.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] The Direct Integral Method for Confidence Intervals for the Ratio of Two Location Parameters
    Wang, Yanqing
    Wang, Suojin
    Carroll, Raymond J.
    [J]. BIOMETRICS, 2015, 71 (03) : 704 - 713
  • [42] An adaptive location-scale test
    Neuhäuser, M
    [J]. BIOMETRICAL JOURNAL, 2001, 43 (07) : 809 - 819
  • [43] Power approximation for the van Elteren test based on location-scale family of distributions
    Zhao, Yan D.
    Qu, Yongming
    Rahardja, Dewi
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2006, 16 (06) : 803 - 815
  • [44] ESTIMATION OF QUANTILES OF LOCATION-SCALE DISTRIBUTIONS BASED ON 2 OR 3 ORDER STATISTICS
    KUBAT, P
    EPSTEIN, B
    [J]. TECHNOMETRICS, 1980, 22 (04) : 575 - 581
  • [45] On stochastic comparisons of minimum order statistics from the location-scale family of distributions
    Hazra, Nil Kamal
    Kuiti, Mithu Rani
    Finkelstein, Maxim
    Nanda, Asok K.
    [J]. METRIKA, 2018, 81 (02) : 105 - 123
  • [46] On consistency of the MLE under finite mixtures of location-scale distributions with a structural parameter
    Liu, Guanfu
    Li, Pengfei
    Liu, Yukun
    Pu, Xiaolong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 199 : 29 - 44
  • [47] Location-scale mixture of skew-elliptical distributions: Looking at the robust modeling
    Nematollahi, N.
    Farnoosh, R.
    Rahnamaei, Z.
    [J]. STATISTICAL METHODOLOGY, 2016, 32 : 131 - 146
  • [48] A Goodness-of-Fit Test for Location-Scale Max-Stable Distributions
    Gonzalez-Estrada, Elizabeth
    Villasenor-Alva, Jose A.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (03) : 557 - 562
  • [49] Univariate and multivariate process yield indices based on location-scale family of distributions
    Dharmasena, L. S.
    Zeephongsekul, P.
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2014, 52 (11) : 3348 - 3365
  • [50] Compatibility of expected utility and μ/σ approaches to risk for a class of non location-scale distributions
    Boyle, Gerry
    Conniffe, Denis
    [J]. ECONOMIC THEORY, 2008, 35 (02) : 343 - 366