A novel H&E color augmentation for domain invariance classification of unannotated histopathology prostate cancer images

被引:2
|
作者
Bazargani, Roozbeh [1 ]
Chen, Wanwen [1 ]
Sadeghian, Sadaf [2 ]
Asadi, Maryam [3 ]
Boschman, Jeffrey [3 ]
Darbandsari, Amirali [1 ]
Bashashati, Ali [3 ]
Salcudean, Septimiu [1 ]
机构
[1] Univ British Columbia, Elect & Comp Engn, 2332 Main Mall, Vancouver, BC, Canada
[2] Univ British Columbia, Comp Sci, 2366 Main Mall, Vancouver, BC, Canada
[3] Univ British Columbia, Sch Biomed Engn, 251-2222 Hlth Sci Mall, Vancouver, BC, Canada
来源
MEDICAL IMAGING 2023 | 2023年 / 12471卷
关键词
Domain adaptation; color normalization; color augmentation; histopathology; prostate cancer; domain adversarial neural network; hematoxylin and eosin; NORMALIZATION;
D O I
10.1117/12.2654040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most current deep learning models for hematoxylin and eosin (H&E) histopathology image analysis lack the power of generalization to datasets collected from other institutes due to the domain shift in the data. In this research, we study the domain shift problem on two prostate cancer (PCa) datasets collected from the Vancouver Prostate Centre (source dataset) and the University of Colorado (target dataset) and develop a novel center-based H&E color augmentation for cross-center model generalization. While previous work used methods such as random augmentation, color normalization, or learning domain-independent features to improve the robustness of the model to changes in H&E stains, our method first augments the H&E color space of the source dataset to color space of both datasets and then adds random color augmentation. Our method covers the larger range of the color distribution of both institutions resulting in a better generalization. We compared our method with two different State-Of-The-Art (SOTA) un-annotated domain adaptation methods: color normalization and unsupervised domain adversarial neural network (DANN) training, with an ablation study. Our proposed method improves the model performance on both the source and target datasets, and has the best performance on the unlabeled target dataset, showing promise as an approach to learning more generalizable features for histopathology image analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A new complete color normalization method for H&E stained histopatholgical images
    Surbhi Vijh
    Mukesh Saraswat
    Sumit Kumar
    Applied Intelligence, 2021, 51 : 7735 - 7748
  • [22] A new complete color normalization method for H&E stained histopatholgical images
    Vijh, Surbhi
    Saraswat, Mukesh
    Kumar, Sumit
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7735 - 7748
  • [23] Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images
    Wen, Zhuoyu
    Lin, Yu-Hsuan
    Wang, Shidan
    Fujiwara, Naoto
    Rong, Ruichen
    Jin, Kevin W.
    Yang, Donghan M.
    Yao, Bo
    Yang, Shengjie
    Wang, Tao
    Xie, Yang
    Hoshida, Yujin
    Zhu, Hao
    Xiao, Guanghua
    GENES, 2023, 14 (04)
  • [24] Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images
    Bejnordi, Babak Ehteshami
    Balkenhol, Maschenka
    Litjens, Geert
    Holland, Roland
    Bult, Peter
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2141 - 2150
  • [25] AIRMEC - an Artificial Intelligence Model to Predict the Molecular Endometrial Cancer Classification from H&E Images
    Fremond, Sarah
    Andani, Sonali
    Wolf, Jurriaan Barkey
    Dijkstra, Jouke
    Jobsen, Jan
    Brinkhuis, Mariel
    Roothaan, Suzan
    Jurgenliemk-Schulz, Ina
    Lutgens, Ludy
    Nout, Remi
    van der Steen-Banasik, Elzbieta
    de Boer, Stephanie
    Powell, Melanie
    Singh, Naveena
    Mileshkin, Linda
    Mackay, Helen
    Leary, Alexandra
    Nijman, Hans
    Smit, Vincent
    Creutzberg, Carien
    Horeweg, Nanda
    Kolzer, Viktor
    Bosse, Tjalling
    LABORATORY INVESTIGATION, 2022, 102 (SUPPL 1) : 746 - 747
  • [26] Adversarial Domain Adaptation for Classification of Prostate Histopathology Whole-Slide Images
    Ren, Jian
    Hacihaliloglu, Ilker
    Singer, Eric A.
    Foran, David J.
    Qi, Xin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 201 - 209
  • [27] CompSegNet: An enhanced U-shaped architecture for nuclei segmentation in H&E histopathology images
    Traore, Mohamed
    Hancer, Emrah
    Samet, Refik
    Yildirim, Zeynep
    Nemati, Nooshin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97
  • [28] AIRMEC - an Artificial Intelligence Model to Predict the Molecular Endometrial Cancer Classification from H&E Images
    Fremond, Sarah
    Andani, Sonali
    Wolf, Jurriaan Barkey
    Dijkstra, Jouke
    Jobsen, Jan
    Brinkhuis, Mariel
    Roothaan, Suzan
    Jurgenliemk-Schulz, Ina
    Lutgens, Ludy
    Nout, Remi
    van der Steen-Banasik, Elzbieta
    de Boer, Stephanie
    Powell, Melanie
    Singh, Naveena
    Mileshkin, Linda
    Mackay, Helen
    Leary, Alexandra
    Nijman, Hans
    Smit, Vincent
    Creutzberg, Carien
    Horeweg, Nanda
    Kolzer, Viktor
    Bosse, Tjalling
    MODERN PATHOLOGY, 2022, 35 (SUPPL 2) : 746 - 747
  • [29] A novel cross correlation-based color texture descriptor for the classification of breast cancer histopathology images
    Kumar, Arvind
    Singh, Chandan
    Sachan, Manoj Kumar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [30] Quantitative diagnosis of bladder cancer by morphometric analysis of H&E images
    Wu, Binlin
    Nebylitsa, Samantha V.
    Mukherjee, Sushmita
    Jain, Manu
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS XI, 2015, 9303