Extended kernel Risk-Sensitive loss unscented Kalman filter based robust dynamic state estimation

被引:7
|
作者
Ma, Wentao [1 ]
Kou, Xiao [2 ]
Zhao, Junbo [3 ]
Chen, Badong [4 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Shaanxi, Peoples R China
[2] State Grid Xi Elect Power Supply Co, Xian 710032, Shannxi, Peoples R China
[3] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06268 USA
[4] Xi An Jiao Tong Univ, Sch Artifificial Intelligence, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic state estimation; Extended kernel risk-sensitive loss; Generalized Gaussian kernel function; Enscented Kalman filter; CORRENTROPY CRITERION; SYSTEMS;
D O I
10.1016/j.ijepes.2022.108898
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The traditional unscented Kalman filter (UKF) with mean square error (MSE) criterion for dynamic state estimation (DSE) is sensitive for unknown non-Gaussian noise and outliers. Leading to biased state estimates. This paper proposes a novel robust UKF with extended kernel risk-sensitive loss (EKRSL) for DSE considering unknown non-Gaussian process and measurement noises. Instead of MSE criterion, a novel robust EKRSL via the generalized Gaussian density is defined in KRSL framework, and we further develop a new robust UKF using the EnKRSL(called EKRSL-UKF). To obtain the recursive form of EKRSL-UKF, the statistical linear regression model is used and the fixed-point iteration is further utilized to iteratively get the optimal state estimate. An error constrained method is also introduced to restrict the error to address the numerical instability problem caused by large outliers. Furthermore, an enhanced EKRSL-UKF is established by using an exponential function of innovation to improve the estimation accuracy in the presence of noise uncertainties. Numerical results carried out on the IEEE 39-bus test system demonstrate that the proposed method can achieve desired robustness without loss of estimation accuracy under various conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Robustness Evaluation of Extended and Unscented Kalman Filter for Battery State of Charge Estimation
    Huang, Chao
    Wang, Zhenhua
    Zhao, Zihan
    Wang, Long
    Lai, Chun Sing
    Wang, Dong
    IEEE ACCESS, 2018, 6 : 27617 - 27628
  • [32] Generalizing the Unscented Kalman Filter for State Estimation
    Butler, Quade
    Hilal, Waleed
    Sicard, Brett
    Ziada, Youssef
    Gadsden, S. Andrew
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [33] Unscented Kalman filter for vehicle state estimation
    Antonov, S.
    Fehn, A.
    Kugi, A.
    VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) : 1497 - 1520
  • [34] Robust State Estimation With Maximum Correntropy Rotating Geometric Unscented Kalman Filter
    Chen, Shanmou
    Zhang, Qiangqiang
    Zhang, Tao
    Zhang, Lingcong
    Peng, Lina
    Wang, Shiyuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [35] Robust unscented Kalman filter for nanosat attitude estimation
    Daero Lee
    George Vukovich
    Regina Lee
    International Journal of Control, Automation and Systems, 2017, 15 : 2161 - 2173
  • [36] Robust Unscented Kalman Filter for Nanosat Attitude Estimation
    Lee, Daero
    Vukovich, George
    Lee, Regina
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (05) : 2161 - 2173
  • [37] Unscented Kalman Filter With Generalized Correntropy Loss for Robust Power System Forecasting-Aided State Estimation
    Ma, Wentao
    Qiu, Jinzhe
    Liu, Xinghua
    Xiao, Gaoxi
    Duan, Jiandong
    Chen, Badong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (11) : 6091 - 6100
  • [38] Adaptive Unscented Kalman Filter with Correntropy Loss for Robust State of Charge Estimation of Lithium-Ion Battery
    Sun, Quan
    Zhang, Hong
    Zhang, Jianrong
    Ma, Wentao
    ENERGIES, 2018, 11 (11)
  • [39] An improved unscented Kalman filter based dynamic state estimation algorithm for electric distribution Systems
    Ahmad, Fiaz
    Rashid, Kabir Muhammad Abdul
    Rasool, Akhtar
    Ozsoy, Esref Emre
    Sabanovic, Asif
    Elitas, Meltem
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2017, 36 (04) : 1220 - 1236
  • [40] Robust extended Kalman filter based state estimation for nonlinear dynamic processes with measurements corrupted by gross errors
    Hu, Guiting
    Zhang, Zhengjiang
    Armaou, Antonios
    Yan, Zhengbing
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 106 : 20 - 33