Multi-Label classification with Missing Labels by Preserving Feature-Label Space Consistency

被引:0
|
作者
Zhang, Zan [1 ,2 ]
Zhang, Depeng [2 ]
Wu, Gongqing [1 ,2 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Minist Educ China, Hefei, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei, Peoples R China
关键词
Missing Labels; Multi-label learning; Space Consistency; Label Correlations;
D O I
10.1109/ICKG59574.2023.00029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification deals with the problem where an instance is associated with multiple labels simultaneously. Most existing multi-label classification algorithms assume that the labels of the training data are complete. However, we can obtain only a partial label set of each instance in some real applications since labelling data is difficult or costly. Some existing works on multi-label classification with missing labels focus on exploiting label correlations to complete the original label space and simultaneously build a multi-label learning model using label specific features. However, these methods may be suboptimal since they do not preserve feature-label space consistency. In this paper, we propose a Space Consistency-based Multi-Label classification algorithm named SCML to address this issue. First, label correlation in label space is learned to augment the incomplete original label matrix to a new supplementary label matrix, and the multi-label classifier is constructed simultaneously based on the new supplementary label matrix. Then, correlation information in feature space is learned based on the probabilistic neighborhood similarities to preserve feature-label space consistency. Moreover, the proposed algorithm has an effective mechanism for learning label-specific features to improve the multi-label classification with missing labels. Extensive experiments on twelve benchmark data sets validate the effectiveness of the proposed approach for improving the generalization performance of state-of-the-art algorithms of multi-label learning with missing labels.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 50 条
  • [31] Multi-label feature selection with streaming labels
    Lin, Yaojin
    Hu, Qinghua
    Zhang, Jia
    Wu, Xindong
    INFORMATION SCIENCES, 2016, 372 : 256 - 275
  • [32] Noisy feature decomposition-based multi-label learning with missing labels
    Ding, Jiaman
    Zhang, Yihang
    Jia, Lianyin
    Fu, Xiaodong
    Jiang, Ying
    INFORMATION SCIENCES, 2024, 662
  • [33] Independent Feature and Label Components for Multi-label Classification
    Zhong, Yongjian
    Xu, Chang
    Du, Bo
    Zhang, Lefei
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 827 - 836
  • [34] Multi-label classification with weak labels by learning label correlation and label regularization
    Ji, Xiaowan
    Tan, Anhui
    Wu, Wei-Zhi
    Gu, Shenming
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20110 - 20133
  • [35] Multi-label classification with weak labels by learning label correlation and label regularization
    Xiaowan Ji
    Anhui Tan
    Wei-Zhi Wu
    Shenming Gu
    Applied Intelligence, 2023, 53 : 20110 - 20133
  • [36] Robust Mapping Learning for Multi-view Multi-label Classification with Missing Labels
    Ren, Weijieying
    Zhang, Lei
    Jiang, Bo
    Wang, Zhefeng
    Guo, Guangming
    Liu, Guiquan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS, 2017, 10412 : 543 - 551
  • [37] Multi-label Classification with Meta-labels
    Read, Jesse
    Puurula, Antti
    Bifet, Albert
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 941 - 946
  • [38] On Missing Labels, Long-tails and Propensities in Extreme Multi-label Classification
    Schultheis, Erik
    Wydmuch, Marek
    Babbar, Rohit
    Dembczynski, Krzysztof
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1547 - 1557
  • [39] Multi-label learning with missing and completely unobserved labels
    Huang, Jun
    Xu, Linchuan
    Qian, Kun
    Wang, Jing
    Yamanishi, Kenji
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (03) : 1061 - 1086
  • [40] Multi-label learning with missing and completely unobserved labels
    Jun Huang
    Linchuan Xu
    Kun Qian
    Jing Wang
    Kenji Yamanishi
    Data Mining and Knowledge Discovery, 2021, 35 : 1061 - 1086