Multidimensional fractional wavelet transforms and uncertainty principles

被引:6
|
作者
Kaur, Navneet [1 ]
Gupta, Bivek [1 ]
Verma, Amit K. [1 ]
机构
[1] IIT Patna, Dept Math, Patna 801106, India
关键词
Multidimensional fractional Fourier; transform; Multidimensional fractional wavelet; Heisenberg's uncertainty principle; Logarithmic uncertainty principle; Local uncertainty principle; FOURIER-TRANSFORM; HEISENBERGS; FAMILY; SPACE;
D O I
10.1016/j.cam.2023.115250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have given a new definition of continuous fractional wavelet transform in RN, namely the multidimensional fractional wavelet transform (MFrWT) and studied some of the basic properties along with the inner product relation and the reconstruction formula. We have also shown that the range of the proposed transform is a reproducing kernel Hilbert space and obtained the associated kernel. We have obtained the uncer-tainty principle like Heisenberg's uncertainty principle, logarithmic uncertainty principle and local uncertainty principle of the multidimensional fractional Fourier transform (MFrFT). Based on these uncertainty principles of the MFrFT we have obtained the corresponding uncertainty principles i.e., Heisenberg's, logarithmic and local uncertainty principles for the proposed MFrWT.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles
    Ferreira, M.
    Morais, J.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (02)
  • [22] Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles
    M. Ferreira
    J. Morais
    Complex Analysis and Operator Theory, 2024, 18
  • [23] Fast classical and quantum fractional Haar Wavelet transforms
    Labunets, V
    Labunets-Rundblad, E
    Astola, J
    ISPA 2001: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2001, : 564 - 569
  • [24] Uncertainty Principles for the Weinstein Wavelet Transform
    Touati, Amel
    Kallel, Imen
    Saoudi, Ahmed
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [25] Multidimensional Complex Wavelet Transforms for Guided Waves directional filtering
    Nanni, M.
    De Marchi, L.
    Baravelli, E.
    Speciale, N.
    INTERNATIONAL CONGRESS ON ULTRASONICS (GDANSK 2011), 2012, 1433 : 459 - 462
  • [26] STATIC AND DYNAMICAL, FRACTIONAL UNCERTAINTY PRINCIPLES
    Kumar, Sandeep
    Ponce Vanegas, Felipe
    Vega, Luis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5691 - 5725
  • [27] Uncertainty principles for the quadratic-phase Fourier transforms
    Shah, Firdous A.
    Nisar, Kottakkaran S.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10416 - 10431
  • [28] Uncertainty Principles for the Fractional Dunkl Transform
    Kallel, Imen
    Saoudi, Ahmed
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [29] Qualitative Uncertainty Principles for the Nonisotropic Angular Stockwell Transforms
    Wang, Xinyu
    Zheng, Shenzhou
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [30] Uncertainty principles associated with quaternionic linear canonical transforms
    Kou, Kit Ian
    Ou, Jianyu
    Morais, Joao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2722 - 2736