A dynamic incentive and reputation mechanism for energy-efficient federated learning in 6G

被引:16
|
作者
Zhu, Ye [1 ]
Liu, Zhiqiang [2 ]
Wang, Peng [3 ]
Du, Chenglie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
[3] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
关键词
Federated learning; Incentive mechanism; Reputation management; Cooperative game; Stackelberg game; Green communication; NETWORKS;
D O I
10.1016/j.dcan.2022.04.005
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
As 5G becomes commercial, researchers have turned attention toward the Sixth-Generation (6G) network with the vision of connecting intelligence in a green energy-efficient manner. Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures while preserving privacy and increasing communication efficiency. However, designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients' contributions during the learning process. In this paper, we propose a dynamic incentive and reputation mechanism to improve energy efficiency and training performance of federated learning. The proposed incentive based on the Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning. Meanwhile, clients' contributions in reputation management are formulated based on the cooperative game to capture the correlation between tasks, which satisfies availability, fairness, and additivity. The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning and improve the accuracy and energy efficiency of the federated learning model.
引用
收藏
页码:817 / 826
页数:10
相关论文
共 50 条
  • [21] A Truthful and Reliable Incentive Mechanism for Federated Learning Based on Reputation Mechanism and Reverse Auction
    Xiong, Ao
    Chen, Yu
    Chen, Hao
    Chen, Jiewei
    Yang, Shaojie
    Huang, Jianping
    Li, Zhongxu
    Guo, Shaoyong
    ELECTRONICS, 2023, 12 (03)
  • [22] Energy-Efficient Industrial Internet of Things in Green 6G Networks
    Fernando, Xavier
    Lazaroiu, George
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [23] Energy-Efficient and Privacy-Preserved Incentive Mechanism for Mobile Edge Computing-Assisted Federated Learning in Healthcare System
    Liu, Jingyuan
    Chang, Zheng
    Wang, Kai
    Zhao, Zhiwei
    Hamalainen, Timo
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 4801 - 4815
  • [24] Energy-Efficient Federated Learning in IoT Networks
    Kong, Deyi
    You, Zehua
    Chen, Qimei
    Wang, Juanjuan
    Hu, Jiwei
    Xiong, Yunfei
    Wu, Jing
    SMART COMPUTING AND COMMUNICATION, 2022, 13202 : 26 - 36
  • [25] Lightweight Digital Twin and Federated Learning With Distributed Incentive in Air-Ground 6G Networks
    Sun, Wen
    Lian, Sijia
    Zhang, Haibin
    Zhang, Yan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1214 - 1227
  • [26] Lightweight Digital Twin and Federated Learning with Distributed Incentive in Air-Ground 6G Networks
    Lian, Sijia
    Zhang, Haibin
    Sun, Wen
    Zhang, Yan
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [27] Energy-Efficient Dynamic Asynchronous Federated Learning in Mobile Edge Computing Networks
    Xu, Guozeng
    Li, Xiuhua
    Li, Hui
    Fan, Qilin
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 160 - 165
  • [28] Towards Native Support for Federated Learning in 6G
    Khan, Mohammad Bariq
    An, Xueli
    Peng, Chenghui
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [29] Federated Learning for 6G: Applications, Challenges, and Opportunities
    Zhaohui Yang
    Mingzhe Chen
    KaiKit Wong
    HVincent Poor
    Shuguang Cui
    Engineering, 2022, (01) : 33 - 41
  • [30] Green Concerns in Federated Learning over 6G
    Borui Zhao
    Qimei Cui
    Shengyuan Liang
    Jinli Zhai
    Yanzhao Hou
    Xueqing Huang
    Miao Pan
    Xiaofeng Tao
    ChinaCommunications, 2022, 19 (03) : 50 - 69