Robust Core-Shell Carbon-Coated Silicon-Based Composite Anode with Electrically Interconnected Spherical Framework for Lithium-Ion Battery

被引:8
|
作者
Jo, A. Hae [1 ,2 ]
Kim, So Yeun [1 ]
Kim, Ji Hoon [1 ]
Kim, Yoong Ahm [2 ]
Yang, Cheol-Min [1 ]
机构
[1] Korea Inst Sci & Technol KIST, Inst Adv Composite Mat, Wonju, Jeollabuk Do, South Korea
[2] Chonnam Natl Univ, Grad Sch, Dept Polymer Engn, Gwangju, South Korea
关键词
GRAPHENE; PERFORMANCE; SI; NANOPARTICLES; ELECTRODE; SYSTEMS;
D O I
10.1155/2023/6874429
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon-coated Si/carbon nanotube/graphene oxide (C-Si/CNT/GO) microspheres with a robust core-shell composite structure were successfully fabricated by efficient and scalable spray-drying and chemical vapor deposition (CVD) for application as a lithium-ion battery (LIB) anode. The amphiphilic GO nanoparticles facilitated the uniform dispersion of Si nanoparticles by suppressing the CNT aggregation in the Si/CNT/GO microspheres, efficiently forming a robust Si/CNT/GO microsphere composite structure. The surface of the Si/CNT/GO microsphere composite was coated with carbon using CH4 via CVD to enhance its cycling performance. The four building block components, namely, Si nanoparticles, CNTs, and GO nanoparticles as the core and the carbon-coating layers as the shell, provided high electrochemical capacity, excellent electrical conductivity, efficient buffer space for the volume expansion of the Si nanoparticles, and high structural stability during lithiation/delithiation. The C-Si/CNT/GO composite anode also exhibited excellent electrochemical performance with high specific capacity (2921 mAh g(-1) at 100 mA g(-1)), long cycle life (1542 mAh g(-1) at 200 mA g(-1) after 100 cycles), and high charge/discharge rate (1506 mAh g(-1) at 6 A g(-1)). This approach for fabricating core-shell structured Si-based composite anodes with excellent electrochemical performance will provide a significant breakthrough for developing next-generation LIBs.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode
    Prakash, Sengodu
    Zhang, Chunfei
    Park, Jong-Deok
    Razmjooei, Fatemeh
    Yu, Jong-Sung
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 47 - 54
  • [32] Preparation methods of the silicon-based composite anode of lithium-ion batteries
    Song, Jun
    Chu, Xiaowan
    Zhang, Qi
    Chen, Yuhui
    Zhang, Xueqing
    Zhang, Guoshuai
    Zhang, Ruolin
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (07): : 3664 - 3678
  • [33] Porous carbon-coated silicon composites for high performance lithium-ion batterie anode
    Wang, Duo
    Kong, Lingyu
    Zhang, Fang
    Liu, Aimin
    Huang, Haitao
    Liu, Yubao
    Shi, Zhongning
    APPLIED SURFACE SCIENCE, 2024, 661
  • [34] Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries
    Wang, Wei
    Gu, Lin
    Qian, Haolei
    Zhao, Ming
    Ding, Xi
    Peng, Xinsheng
    Sha, Jian
    Wang, Yewu
    JOURNAL OF POWER SOURCES, 2016, 307 : 410 - 415
  • [35] Effects of volume-confinement on lithium-ion battery with silicon-based anode
    Jhan, Cheng-Ying
    Wang, Pin -Sen
    Sung, Shi-Hong
    Tzeng, Yonhua
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [36] Research progress on interface reaction of silicon-based anode for lithium-ion battery
    Chang Zeng-hua
    Wang Jian-tao
    Li Wen-jin
    Wu Zhao-hui
    Lu Shi-gang
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2019, 47 (02): : 11 - 25
  • [37] Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries
    Kim, Jung Sub
    Pfleging, Wilhelm
    Kohler, Robert
    Seifert, Hans Juergen
    Kim, Tae Yong
    Byun, Dongjin
    Jung, Hun-Gi
    Choi, Wonchang
    Lee, Joong Kee
    JOURNAL OF POWER SOURCES, 2015, 279 : 13 - 20
  • [38] Progress in modification of micron silicon-based anode materials for lithium-ion battery
    Chen, Xinyuan
    Liu, Qi
    Hou, Lijuan
    Yang, Qiang
    Zhao, Xiaohan
    Mu, Daobin
    Li, Li
    Chen, Renjie
    Wu, Feng
    JOURNAL OF ENERGY STORAGE, 2024, 93
  • [39] Preparation and Electrochemical Performance of Anode for High-Performance Silicon-Based Composite Lithium-Ion Battery
    Zhang M.
    Li J.
    Su S.
    Zhang D.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (10): : 2591 - 2598
  • [40] Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries
    Yoon, Sukeun
    Park, Cheol-Min
    Sohn, Hun-Joon
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (04) : A42 - A45