A Machine Learning-Based Readability Model for Gujarati Texts

被引:0
|
作者
Bhogayata, Chandrakant K. [1 ]
机构
[1] Maharaja Krishnakumarsinhji Bhavnagar Univ, Bhavnagar, Gujarat, India
关键词
Readability model; readability rating and level of education; interrater agreement; model comparison; Gujarati texts;
D O I
10.1145/3637826
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study aims to develop a machine learning-based model to predict the readability of Gujarati texts. The dataset was 50 prose passages from Gujarati literature. Fourteen lexical and syntactic readability text features were extracted from the dataset using a machine learning algorithm of the unigram parts of speech tagger and three Python programming scripts. Two samples of native Gujarati speaking secondary and higher education students rated the Gujarati texts for readability judgment on a 10-point scale of "easy" to "difficult" with the interrater agreement. After dimensionality reduction, seven text features as the independent variables and the mean readability rating as the dependent variable were used to train the readability model. As the students' level of education and gender were related to their readability rating, four readability models for school students, university students, male students, and female students were trained with a backward stepwise multiple linear regression algorithm of supervised machine learning. The trained model is comparable across the raters' groups. The best model is the university students' readability rating model. The model is cross-validated. It explains 91% and 88% of the variance in readability ratings at training and cross-validation, respectively, and its effect size and power are large and high.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Machine learning-based probabilistic profitable model in algorithmic trading
    Khandelwal, Shubham
    Gupta, Piyush
    Jain, Aman
    Nehra, Ajay
    Yadav, Gyan Singh
    Kushwaha, Riti
    Ramani, Selvanambi
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (01)
  • [32] A machine learning-based simplified collision model for granular flows
    Adamczyk, Wojciech
    Widuch, Agata
    Morkisz, Pawel
    Zhou, Minmin
    Myöhänen, Kari
    Klimanek, Adam
    Pawlak, Sebastian
    [J]. Powder Technology, 2024, 444
  • [33] A generalized machine learning-based model for the detection of DDoS attacks
    Marvi, Murk
    Arfeen, Asad
    Uddin, Riaz
    [J]. INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2021, 31 (06)
  • [34] A machine learning-based ensemble model for securing the IoT network
    Singh, Rohit
    Sharma, Krishna Pal
    Awasthi, Lalit Kumar
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 10883 - 10897
  • [35] A Machine Learning-Based Model for Predicting the Risk of Cardiovascular Disease
    Hsiao, Chiu-Han
    Yu, Po-Chun
    Hsieh, Chia-Ying
    Zhong, Bing-Zi
    Tsai, Yu-Ling
    Cheng, Hao-min
    Chang, Wei-Lun
    Lin, Frank Yeong-Sung
    Huang, Yennun
    [J]. ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 1, 2022, 449 : 364 - 374
  • [36] A MACHINE LEARNING-BASED SURROGATE MODEL FOR SIMILARITY CRITERION OF SOLIDIFICATION
    Huang, Xixi
    Xue, Xiang
    Wang, Mingjie
    Zhu, Jihu
    Dai, Guixin
    Wu, Shiping
    [J]. INTERNATIONAL JOURNAL OF METALCASTING, 2024,
  • [37] Machine Learning-Based Resist 3D Model
    Shim, Seongbo
    Choi, Suhyeong
    Shin, Youngsoo
    [J]. OPTICAL MICROLITHOGRAPHY XXX, 2017, 10147
  • [38] Machine learning-based prediction model for the efficacy and safety of statins
    Xiong, Yu
    Liu, Xiaoyang
    Wang, Qing
    Zhao, Li
    Kong, Xudong
    Da, Chunhe
    Meng, Zuohuan
    Qu, Leilei
    Xia, Qinfang
    Liu, Lihong
    Li, Pengmei
    [J]. FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [39] Machine Learning-based Energy Consumption Model for Data Center
    Qiao, Lin
    Yu, Yuanqi
    Wang, Qun
    Zhang, Yu
    Song, Yueming
    Yu, Xiaosheng
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3051 - 3055
  • [40] MACHINE LEARNING-BASED MODEL FOR PREDICTING CONCRETE COMPRESSIVE STRENGTH
    Tu Trung Nguyen
    Long Tran Ngoc
    Hoang Hiep Vu
    Tung Pham Thanh
    [J]. INTERNATIONAL JOURNAL OF GEOMATE, 2021, 20 (77): : 197 - 204