CLDRNet: A Difference Refinement Network Based on Category Context Learning for Remote Sensing Image Change Detection

被引:0
|
作者
Wan, Ling [1 ,2 ]
Tian, Ye [1 ,2 ]
Kang, Wenchao [1 ,2 ]
Ma, Lei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Feature extraction; Task analysis; Remote sensing; Transformers; Deep learning; Semantics; Support vector machines; Category context learning (CCL); clustering learning (CL); difference map refinement (DMR); optical remote sensing image; change detection (CD); CHANGE VECTOR ANALYSIS; CLASSIFICATION;
D O I
10.1109/JSTARS.2023.3327340
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, change detection (CD) of optical remote sensing images has made remarkable progress through using deep learning. However, current CD deep learning methods are usually improved from the semantic segmentation models, and focus on enhancing the separability of changed and unchanged features. They ignore the essential characteristics of CD, i.e., different land cover changes exhibit different change magnitudes, resulting in limited accuracy and serious false alarms. To address this limitation, in this article, a category context learning-based difference refinement network (CLDRNet) based on our previous work is proposed. Considering the semantic content differences of heterogeneous land covers, a category context learning module is designed, which introduces a clustering learning procedure to generate an overall representation for each category, guiding the category context modeling. The clustering learning process is differentiable and can be integrated into the end-to-end trainable CD network, so it considers the semantic content differences from the CD perspective, thereby improving the CD performance. In addition, to address the magnitude differences of different land cover changes, a two-stage CD strategy is introduced. The two stages correspond to difference map learning and difference map refinement, aiming at ensuring high detection rates and revising false alarms, respectively. Finally, experimental results on three CD datasets verify the effectiveness of our CLDRNet in both visual and quantitative analysis.
引用
收藏
页码:2133 / 2148
页数:16
相关论文
共 50 条
  • [31] Semisupervised Adaptive Ladder Network for Remote Sensing Image Change Detection
    Shi, Jiao
    Wu, Tiancheng
    Qin, A. K.
    Lei, Yu
    Jeon, Gwanggil
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Geometric Variation Adaptive Network for Remote Sensing Image Change Detection
    Huo, Shuwei
    Zhou, Yuan
    Zhang, Lei
    Feng, Yanjie
    Xiang, Wei
    Kung, Sun-Yuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [33] An Efficient Lightweight Neural Network for Remote Sensing Image Change Detection
    Song, Kaiqiang
    Cui, Fengzhi
    Jiang, Jie
    REMOTE SENSING, 2021, 13 (24)
  • [34] Dual-branch network for change detection of remote sensing image
    Ma, Chong
    Weng, Liguo
    Xia, Min
    Lin, Haifeng
    Qian, Ming
    Zhang, Yonghong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [35] Bitemporal Attention Sharing Network for Remote Sensing Image Change Detection
    Wang, Zhongchen
    Gu, Guowei
    Xia, Min
    Weng, Liguo
    Hu, Kai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 10368 - 10379
  • [36] CANet: A Combined Attention Network for Remote Sensing Image Change Detection
    Lu, Di
    Wang, Liejun
    Cheng, Shuli
    Li, Yongming
    Du, Anyu
    INFORMATION, 2021, 12 (09)
  • [37] SEMANTIC DECOUPLED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CHANGE DETECTION
    Chen, Hao
    Zao, Yifan
    Liu, Liqin
    Chen, Song
    Shi, Zhenwei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1051 - 1054
  • [38] River change detection based on remote sensing image and vector
    Zhu, Lina
    Zhang, Hanqing
    Pa, Li
    FIRST INTERNATIONAL MULTI-SYMPOSIUMS ON COMPUTER AND COMPUTATIONAL SCIENCES (IMSCCS 2006), PROCEEDINGS, VOL 1, 2006, : 188 - +
  • [39] MDFENet: A Multiscale Difference Feature Enhancement Network for Remote Sensing Change Detection
    Li, Hao
    Liu, Xiaoyong
    Li, Huihui
    Dong, Ziyang
    Xiao, Xiangling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3104 - 3115
  • [40] A Difference Enhanced Neural Network for Semantic Change Detection of Remote Sensing Images
    Wang, Renfang
    Wu, Hucheng
    Qiu, Hong
    Wang, Feng
    Liu, Xiufeng
    Cheng, Xu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20