UTILIZING AUTOENCODERS FOR ANALYSIS AND CLASSIFICATION OF MICROSCOPIC IN SITU HYBRIDIZATION IMAGES

被引:0
|
作者
Yanev, Aleksandar A. [1 ]
Momcheva, Galina D. [2 ]
Pavlov, Stoyan P. [3 ,4 ]
机构
[1] High Sch Math Dr Petar Beron, Aleksander Stamboliyski Blvd, Varna 9000, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Akad Georgi Bonchev St,Bl 8, Sofia 1113, Bulgaria
[3] Med Univ Varna, Dept Anat & Cell Biol, 55 Prof Marin Drinov St, Varna 9002, Bulgaria
[4] Med Univ Prof Dr Paraskev Stoyanov, Adv Computat Bioimaging Res Inst, Varna, Bulgaria
来源
关键词
artificial neural networks; deep learning autoencoders; image analysis; unsupervised learning; fuzzy clustering;
D O I
10.7546/CRABS.2023.11.11
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Currently, analysis of microscopic In Situ Hybridization (ISH) images is done manually by experts. Precise evaluation and classification of such micro-scopic images can ease experts' work and reveal further insights about the data. In this work, we propose a deep-learning workflow to detect and classify areas of microscopic images with similar levels of gene expression. Analysis of the data is done by employing a type of ANN - Deep Learning Autoencoders - suitable for unsupervised learning. The model's performance is optimised by balancing the latent layers' length and complexity and fine-tuning hyperparameters. The results are validated by adapting the mean-squared error (MSE) metric and comparison to expert's evaluation. Reconstruction of the whole-scale micro-scopic images is used to summarise and visualise the results.
引用
收藏
页码:1733 / 1742
页数:10
相关论文
共 50 条
  • [41] ELECTRON-MICROSCOPIC IN-SITU HYBRIDIZATION IN AMPHIBIAN LAMPBRUSH CHROMOSOMES
    BONNANFANTJAIS, ML
    PENRADMOBAYED, M
    ANGELIER, N
    [J]. EUROPEAN JOURNAL OF CELL BIOLOGY, 1993, 61 (02) : 362 - 368
  • [42] The Design of a Microscopic System for Typical Fluorescent in-situ Hybridization Applications
    Yi, Dingrong
    Xie, Shaochuan
    [J]. 2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [43] Automatic Classification of Bacterial Cells in Digital Microscopic Images
    Hiremath, P. S.
    Bannigidad, Parashuram
    [J]. SECOND INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, 2010, 7546
  • [44] Classification of Thyroid Carcinoma in FNAB Cytological Microscopic Images
    Gopinath, B.
    Gupta, B. R.
    [J]. INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2010, 5 (02) : 60 - 72
  • [45] Manifold classification of neuron types from microscopic images
    Liu, Lijuan
    Qian, Penghao
    [J]. BIOINFORMATICS, 2022, 38 (21) : 4987 - 4989
  • [46] Automated classification of industrial fluids based on microscopic images
    Debska, B
    Dobrowolski, L
    [J]. PRZEMYSL CHEMICZNY, 2003, 82 (8-9): : 1275 - 1278
  • [47] Review of Leukocyte Classification Techniques for Microscopic Blood Images
    Rawat, Jyoti
    Bhadauria, H. S.
    Singh, Annapurna
    Virmani, Jitendra
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 1948 - 1954
  • [48] Leveraging autoencoders in change vector analysis of optical satellite images
    Giuseppina Andresini
    Annalisa Appice
    Daniele Iaia
    Donato Malerba
    Nicolò Taggio
    Antonello Aiello
    [J]. Journal of Intelligent Information Systems, 2022, 58 : 433 - 452
  • [49] Leveraging autoencoders in change vector analysis of optical satellite images
    Andresini, Giuseppina
    Appice, Annalisa
    Iaia, Daniele
    Malerba, Donato
    Taggio, Nicolo
    Aiello, Antonello
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 58 (03) : 433 - 452
  • [50] Quantitative analysis of in situ hybridization histochemistry
    Gundlach, AL
    O'Shea, RD
    [J]. IN SITU HYBRIDIZATION PROTOCOLS FOR THE BRAIN, 2ND EDITION, 2002, 47 : 135 - 170