UTILIZING AUTOENCODERS FOR ANALYSIS AND CLASSIFICATION OF MICROSCOPIC IN SITU HYBRIDIZATION IMAGES

被引:0
|
作者
Yanev, Aleksandar A. [1 ]
Momcheva, Galina D. [2 ]
Pavlov, Stoyan P. [3 ,4 ]
机构
[1] High Sch Math Dr Petar Beron, Aleksander Stamboliyski Blvd, Varna 9000, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Akad Georgi Bonchev St,Bl 8, Sofia 1113, Bulgaria
[3] Med Univ Varna, Dept Anat & Cell Biol, 55 Prof Marin Drinov St, Varna 9002, Bulgaria
[4] Med Univ Prof Dr Paraskev Stoyanov, Adv Computat Bioimaging Res Inst, Varna, Bulgaria
来源
关键词
artificial neural networks; deep learning autoencoders; image analysis; unsupervised learning; fuzzy clustering;
D O I
10.7546/CRABS.2023.11.11
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Currently, analysis of microscopic In Situ Hybridization (ISH) images is done manually by experts. Precise evaluation and classification of such micro-scopic images can ease experts' work and reveal further insights about the data. In this work, we propose a deep-learning workflow to detect and classify areas of microscopic images with similar levels of gene expression. Analysis of the data is done by employing a type of ANN - Deep Learning Autoencoders - suitable for unsupervised learning. The model's performance is optimised by balancing the latent layers' length and complexity and fine-tuning hyperparameters. The results are validated by adapting the mean-squared error (MSE) metric and comparison to expert's evaluation. Reconstruction of the whole-scale micro-scopic images is used to summarise and visualise the results.
引用
收藏
页码:1733 / 1742
页数:10
相关论文
共 50 条
  • [1] DeepBrain: Functional Representation of Neural In-Situ Hybridization Images for Gene Ontology Classification Using Deep Convolutional Autoencoders
    Cohen, Ido
    David, Eli
    Netanyahu, Nathan S.
    Liscovitch, Noa
    Chechik, Gal
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 287 - 296
  • [2] Automatic signal classification in fluorescence in situ hybridization images
    Lerner, B
    Clocksin, WF
    Dhanjal, S
    Hultén, MA
    Bishop, CM
    [J]. CYTOMETRY, 2001, 43 (02): : 87 - 93
  • [3] Classification of fluorescence in situ hybridization images using belief networks
    Malka, R
    Lerner, B
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (16) : 1777 - 1785
  • [4] Gabor Features for the Classification and Evaluation of Chromogenic In-Situ Hybridization Images
    Pavlov, Stoyan
    Momcheva, Galina
    Burlakova, Pavlina
    Atanasov, Simeon
    Stoyanov, Dimo
    Ivanov, Martin
    Tonchev, Anton
    [J]. CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 375 - 383
  • [5] Automated detection and analysis of fluorescent in situ hybridization spots depicted in digital microscopic images of Pap-smear specimens
    Wang, Xingwei
    Zheng, Bin
    Li, Shibo
    Zhang, Roy
    Mulvihill, John J.
    Chen, Wei R.
    Liu, Hong
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (02)
  • [6] Classification of Multicolor Fluorescence In Situ Hybridization (M-FISH) Images With Sparse Representation
    Cao, Hongbao
    Deng, Hong-Wen
    Li, Marilyn
    Wang, Yu-Ping
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2012, 11 (02) : 111 - 118
  • [7] Feasibility of Haralick's Texture Features for the Classification of Chromogenic In-situ Hybridization Images
    Pavlov, Stoyan
    Momcheva, Galina
    Burlakova, Pavlina
    Atanasov, Simeon
    Stoyanov, Dimo
    Ivanov, Martin
    Tonchev, Anton
    [J]. PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON BIOMEDICAL INNOVATIONS AND APPLICATIONS (BIA 2020), 2020, : 65 - 68
  • [8] Comparative Analysis of Gene Expression Analysis Methods for RNA in Situ Hybridization Images
    Ariotta, Valeria
    Azzalini, Eros
    Canzonieri, Vincenzo
    Hautaniemi, Sampsa
    Bonin, Serena
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2024, 26 (10): : 931 - 942
  • [9] CLASSIFICATION OF ELECTRON-MICROSCOPIC IMAGES BY MULTIVARIATE MATRIX ANALYSIS
    KAPP, OH
    XIMEN, JY
    [J]. OPTIK, 1985, 70 (04): : 146 - 151
  • [10] A Multi-level Thresholding Based Segmentation Method for Microscopic Fluorescence In Situ Hybridization (FISH) Images
    Kabakci, Kaan A.
    Capar, Abdulkerim
    Toreyin, B. Ugur
    Akkoc, Mertkan
    Borazan, Ozan
    Turkmen, Ilknur
    Ata, Lutfiye Durak
    [J]. 2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 849 - 852