Nonlinear autocorrelation function of functional time series

被引:3
|
作者
Huang, Xin [1 ]
Shang, Han Lin [1 ]
机构
[1] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Level 7,4 Eastern Rd, Sydney, NSW 2109, Australia
关键词
Functional autoregressive model; Functional GARCH model; Financial time series; Forex rates; Nonlinear temporal dependence; PATTERNS;
D O I
10.1007/s11071-022-07927-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In functional time series analysis, the functional autocorrelation function (fACF) plays an important role in revealing the temporal dependence structures underlying the dynamics and identifying the lags at which substantial correlation exists. However, akin to its counterpart in the univariate case, the fACF is restricted by linear structure and can be misleading in reflecting nonlinear temporal dependence. This paper proposes a nonlinear alternative to the fACF for analyzing the temporal dependence in functional time series. We consider linear and nonlinear data generating processes: a functional autoregressive process and a functional generalized autoregressive conditional heteroskedasticity process. We demonstrate that when the process exhibits linear temporal structures, the inference obtained from our proposed nonlinear fACF is consistent with that from the fACF. When the underlying process exhibits nonlinear temporal dependence, our nonlinear fACF has a superior capability in uncovering the nonlinear structure that the fACF misleads. An empirical data analysis highlights its applications in unveiling nonlinear temporal structures in the daily curves of the intraday volatility dynamics of the foreign exchange rate.
引用
收藏
页码:2537 / 2554
页数:18
相关论文
共 50 条
  • [21] S-ACF: a selective estimator for the autocorrelation function of irregularly sampled time series
    Kreutzer, Lars T.
    Gillen, Edward
    Briegal, Joshua T.
    Queloz, Didier
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (04) : 5049 - 5061
  • [22] Unraveling Time Series Dynamics: Evaluating Partial Autocorrelation Function Distribution and Its Implications
    Hassani, Hossein
    Marvian, Leila
    Yarmohammadi, Masoud
    Yeganegi, Mohammad Reza
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
  • [23] On a method for detecting periods and repeating patterns in time series data with autocorrelation and function approximation
    Breitenbach, Tim
    Wilkusz, Bartosz
    Rasbach, Lauritz
    Jahnke, Patrick
    [J]. PATTERN RECOGNITION, 2023, 138
  • [24] The discrete Chebyshev algorithm for nonparametric estimation of autocorrelation function of electrochemical random time series
    Klyuev, A. L.
    Davydov, A. D.
    Grafov, B. M.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (08) : 2325 - 2330
  • [25] AN INTERESTING NONLINEAR TRANSFORMATION OF THE THEORETICAL AUTOCORRELATION FUNCTION
    ANDERSON, OD
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 52 (02) : 165 - 167
  • [26] Partial Autocorrelation Diagnostics for Count Time Series
    Weiss, Christian H.
    Aleksandrov, Boris
    Faymonville, Maxime
    Jentsch, Carsten
    [J]. ENTROPY, 2023, 25 (01)
  • [27] A Series Expansion for the Time Autocorrelation of Dynamical Variables
    Maiocchi, Alberto Mario
    Carati, Andrea
    Giorgilli, Antonio
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (06) : 1054 - 1071
  • [28] Sensitivity to autocorrelation in judgmental time series forecasting
    Reimers, Stian
    Harvey, Nigel
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (04) : 1196 - 1214
  • [29] A Series Expansion for the Time Autocorrelation of Dynamical Variables
    Alberto Mario Maiocchi
    Andrea Carati
    Antonio Giorgilli
    [J]. Journal of Statistical Physics, 2012, 148 : 1054 - 1071
  • [30] STATISTICAL INFERENCE FOR FUNCTIONAL TIME SERIES: AUTOCOVARIANCE FUNCTION
    Zhong, Chen
    Yang, Lijian
    [J]. STATISTICA SINICA, 2023, 33 (04) : 2519 - 2543