Fusion of imaging and non-imaging data for disease trajectory prediction for coronavirus disease 2019 patients

被引:1
|
作者
Tariq, Amara [1 ]
Tang, Siyi [2 ]
Sakhi, Hifza [3 ]
Celi, Leo Anthony [4 ]
Newsome, Janice M. [5 ]
Rubin, Daniel L. [6 ,7 ]
Trivedi, Hari [5 ]
Gichoya, Judy Wawira [5 ]
Banerjee, Imon [8 ,9 ]
机构
[1] Mayo Clin, Dept Adm, Phoenix, AZ 85054 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[3] Philadelphia Coll Osteopath Med, Georgia Campus, Swanee, GA USA
[4] MIT, Boston, MA USA
[5] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, Atlanta, GA USA
[6] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[7] Stanford Univ, Dept Radiol, Stanford, CA USA
[8] Mayo Clin, Dept Radiol, Phoenix, AZ USA
[9] Arizona State Univ, Ira A Fulton Sch Engn, Dept Comp Engn, Tempe, AZ USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
graph neural network; fusion model; clinical event prediction; DISPARITIES; NETWORK; ACCESS;
D O I
10.1117/1.JMI.10.3.034004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Our study investigates whether graph-based fusion of imaging data with non-imaging electronic health records (EHR) data can improve the prediction of the disease trajectories for patients with coronavirus disease 2019 (COVID-19) beyond the prediction performance of only imaging or non-imaging EHR data. Approach: We present a fusion framework for fine-grained clinical outcome prediction [discharge, intensive care unit (ICU) admission, or death] that fuses imaging and non-imaging information using a similarity-based graph structure. Node features are represented by image embedding, and edges are encoded with clinical or demographic similarity. Results: Experiments on data collected from the Emory Healthcare Network indicate that our fusion modeling scheme performs consistently better than predictive models developed using only imaging or non-imaging features, with area under the receiver operating characteristics curve of 0.76, 0.90, and 0.75 for discharge from hospital, mortality, and ICU admission, respectively. External validation was performed on data collected from the Mayo Clinic. Our scheme highlights known biases in the model prediction, such as bias against patients with alcohol abuse history and bias based on insurance status. Conclusions: Our study signifies the importance of the fusion of multiple data modalities for the accurate prediction of clinical trajectories. The proposed graph structure can model relationships between patients based on non-imaging EHR data, and graph convolutional networks can fuse this relationship information with imaging data to effectively predict future disease trajectory more effectively than models employing only imaging or non-imaging data. Our graph-based fusion modeling frameworks can be easily extended to other prediction tasks to efficiently combine imaging data with non-imaging clinical data. (c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients
    Yang, Zongguo
    Shi, Jia
    He, Zhang
    Lu, Ying
    Xu, Qingnian
    Ye, Chen
    Chen, Shishi
    Tang, Bozong
    Yin, Keshan
    Lu, Yunfei
    Chen, Xiaorong
    AGING-US, 2020, 12 (07): : 6037 - 6048
  • [42] Cardiac imaging phenotype in patients with coronavirus disease 2019 (COVID-19): results of the cocarde study
    Olivier Lairez
    Virginie Blanchard
    Valérie Houard
    Fanny Vardon-Bounes
    Maeva Lemasle
    Eve Cariou
    Yoan Lavie-Badie
    Stéphanie Ruiz
    Stéphanie Cazalbou
    Clément Delmas
    Bernard Georges
    Michel Galinier
    Didier Carrié
    Jean-Marie Conil
    Vincent Minville
    The International Journal of Cardiovascular Imaging, 2021, 37 : 449 - 457
  • [43] Cardiac imaging phenotype in patients with coronavirus disease 2019 (COVID-19): results of the cocarde study
    Lairez, Olivier
    Blanchard, Virginie
    Houard, Valerie
    Vardon-Bounes, Fanny
    Lemasle, Maeva
    Cariou, Eve
    Lavie-Badie, Yoan
    Ruiz, Stephanie
    Cazalbou, Stephanie
    Delmas, Clement
    Georges, Bernard
    Galinier, Michel
    Carrie, Didier
    Conil, Jean-Marie
    Minville, Vincent
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2021, 37 (02): : 449 - 457
  • [44] Geopositioning accuracy prediction results for registration of imaging and non-imaging sensors using moving objects
    Taylor, CR
    Dolloff, JT
    Lofy, BA
    Luker, SA
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XII, 2003, 5096 : 387 - 398
  • [45] Identification of Plant Species using Non-Imaging Hyperspectral Data
    Varpe, Amarsinh B.
    Rajendra, Yogesh D.
    Vibhute, Amol D.
    Gaikwad, Sandeep V.
    Kale, K. V.
    PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON MAN AND MACHINE INTERFACING (MAMI), 2015,
  • [46] Correspondence on 'Coronavirus disease 2019 in patients with cardiovascular disease'
    Mungmunpuntipantip, Rujittika
    Wiwanitkit, Viroj
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2022, 23 (01)
  • [47] Detection and risk stratification of cardiac amyloidosis patients by integration of imaging and non-imaging data using a machine learning approach
    Spielvogel, C. P.
    Haberl, D.
    Kluge, K.
    Mascherbauer, K.
    Hennenberg, J.
    Yu, J.
    Ning, J.
    Traub-Weidinger, T.
    Calabretta, R.
    Mascherbauer, J.
    Kammerlander, A.
    Hengstenberg, C.
    Hacker, M.
    Nitsche, C.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [48] Ventilation of coronavirus disease 2019 patients
    Grasselli, Giacomo
    Cattaneo, Emanuele
    Scaravilli, Vittorio
    CURRENT OPINION IN CRITICAL CARE, 2021, 27 (01) : 6 - 12
  • [49] Constipation in early de novo Parkinson's disease: Prevalence and correlates with clinical features, imaging and non-imaging biomarkers
    Pagano, G.
    Niccolini, F.
    Politis, M.
    MOVEMENT DISORDERS, 2016, 31 : S256 - S256
  • [50] Multimodal Imaging of Coronavirus Disease 2019-Associated Retinal Ischemia in a Patient with Dense Deposit Disease
    Zhu, Ivy
    Jampol, Lee m.
    OPHTHALMOLOGY RETINA, 2023, 7 (12): : 1118 - 1118