Twisted Iwasawa invariants of knots

被引:0
|
作者
Tange, Ryoto [1 ]
Ueki, Jun [2 ,3 ]
机构
[1] Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[2] Chuo Univ, Fac Sci & Engn, Dept Math, Tokyo, Japan
[3] Ochanomizu Univ, Fac Sci, Dept Math, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 1128610, Japan
关键词
arithmetic topology; fiberedness; genus; Iwasawa invariants; knot; profinite rigidity; twisted Alexander polynomial; ALEXANDER POLYNOMIALS; PROFINITE RIGIDITY; REIDEMEISTER TORSION; FORMULA; LINK;
D O I
10.1002/mana.202200543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number and m an integer coprime to p. In the spirit of arithmetic topology, we introduce the notions of the twisted Iwasawa invariants lambda,mu,nu$\lambda , \mu , \nu$ of GLN-representations and Z/mZxZp${\mathbb {Z}}/m{\mathbb {Z}}\times {\mathbb {Z}}_{p}$-covers of knots. We prove among other things that the set of Iwasawa invariants determines the genus and the fiberedness of a knot, yielding their profinite rigidity. Several intuitive examples are attached. We further prove the mu=0$\mu =0$ theorem for SL2-representations of twist knot groups and give some remarks.
引用
收藏
页码:1519 / 1534
页数:16
相关论文
共 50 条