机构:
Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, JapanWaseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
Tange, Ryoto
[1
]
Ueki, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Chuo Univ, Fac Sci & Engn, Dept Math, Tokyo, Japan
Ochanomizu Univ, Fac Sci, Dept Math, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 1128610, JapanWaseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
Ueki, Jun
[2
,3
]
机构:
[1] Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[2] Chuo Univ, Fac Sci & Engn, Dept Math, Tokyo, Japan
[3] Ochanomizu Univ, Fac Sci, Dept Math, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 1128610, Japan
arithmetic topology;
fiberedness;
genus;
Iwasawa invariants;
knot;
profinite rigidity;
twisted Alexander polynomial;
ALEXANDER POLYNOMIALS;
PROFINITE RIGIDITY;
REIDEMEISTER TORSION;
FORMULA;
LINK;
D O I:
10.1002/mana.202200543
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let p be a prime number and m an integer coprime to p. In the spirit of arithmetic topology, we introduce the notions of the twisted Iwasawa invariants lambda,mu,nu$\lambda , \mu , \nu$ of GLN-representations and Z/mZxZp${\mathbb {Z}}/m{\mathbb {Z}}\times {\mathbb {Z}}_{p}$-covers of knots. We prove among other things that the set of Iwasawa invariants determines the genus and the fiberedness of a knot, yielding their profinite rigidity. Several intuitive examples are attached. We further prove the mu=0$\mu =0$ theorem for SL2-representations of twist knot groups and give some remarks.
机构:
Nagoya City Univ, Grad Sch Nat Sci, Mizuho Ku, 1 Yamanohata,Mizuho Cho, Nagoya, Aichi 4678501, JapanNagoya City Univ, Grad Sch Nat Sci, Mizuho Ku, 1 Yamanohata,Mizuho Cho, Nagoya, Aichi 4678501, Japan
Kamada, Naoko
KNOT THEORY AND ITS APPLICATIONS,
2016,
670
: 313
-
325