End-Group Engineering of Nonfullerene Acceptors for High-Efficiency Organic Solar Cells

被引:23
|
作者
Luo, Zhenghui [1 ]
Yan, He [2 ,3 ]
Yang, Chuluo [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab New Informat Display & Storage Ma, Shenzhen 518060, Peoples R China
[2] Hong Kong Univ Sci & Technol HKUST, Dept Chem, Kowloon, Hong Kong 999077, Peoples R China
[3] Hong Kong Univ Sci & Technol HKUST, Chinese Natl Engn Res Ctr Tissue Restorat & Recons, Hong Kong Branch, Kowloon, Hong Kong 999077, Peoples R China
来源
ACCOUNTS OF MATERIALS RESEARCH | 2023年 / 4卷 / 11期
关键词
PERFORMANCE; ENERGY;
D O I
10.1021/accountsmr.3c00160
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, organic solar cells (OSCs) have made significant advancements due to a deeper understanding of molecular design and device technology. One area of molecular design that has contributed to these advancements is the emergence of nonfullerene small-molecule acceptors (SMAs) and polymerized SMAs. The molecular design strategy of state-of-the-art SMAs focuses on two aspects: the electron-rich central core unit and electron-deficient end groups. Different from the manipulation of the central cores, end-group engineering is a direct and efficient means to adjust the physicochemical properties and crystallization/aggregation behavior of acceptors, leading to enhanced photovoltaic performance. On the basis of our recent research advances, herein we focus on the topic of end-group engineering of nonfullerene acceptors, aiming to provide a comprehensive understanding of the optimization of end groups for the design of high-performance acceptor materials.In this Account, first, we systematically compare the difference between thiophene-fused and benzene-fused end groups in synthetic routes and molecular energy levels. Unlike the centrosymmetric benzene, the axisymmetric thiophene-fused end groups have two different fusion modes, resulting in their different frontier orbital energy levels. Second, we offer a wrought review of SMAs with thiophene-fused or thiophene derivatives-fused end groups, emphasizing the important role of thiophene derivatives-fused end groups in enhancing molecular packing, improving exciton bonding energy, and reducing energy loss in OSCs. Additionally, we reveal the specific reason why the thiophene-fused end group with an alpha/beta fusion site and the thiophene-fused end group with a beta/gamma fusion site have significantly different molecular energy levels. Third, we summarize the photovoltaic parameters and conventional physicochemical properties of polymerized SMAs based on monobromobenzene-fused end groups and fluorobromine (or chlorobromide) cosubstituted benzene-fused end groups. We demonstrate that regioregular polymerized SMAs show great prospects in realizing high-performance all-polymer solar cells by eliminating the disorder of molecular backbone structure with pure monobromobenzene-fused end groups. Furthermore, the halogenation strategy (fluorination and chlorination) is also an effective method for designing high-performance PSMAs with large electron mobility induced by the intermolecular noncovalent interactions of halogen<middle dot><middle dot><middle dot>H, halogen<middle dot><middle dot><middle dot>S, and halogen<middle dot><middle dot><middle dot>halogen. Finally, we analyze the role of asymmetric end group substitution for developing high-performance SMAs. In comparison with symmetric SMAs, the asymmetric one achieves low energy loss while ensuring sufficient charge separation. As a summary and perspective, we discuss the current questions regarding end groups and propose our insights into the future development of nonfullerene acceptors with novel end groups toward low-cost and high-performance OSCs.
引用
收藏
页码:968 / 981
页数:14
相关论文
共 50 条
  • [41] Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells
    Luo, Zhenghui
    Xu, Tongle
    Zhang, Cai'e
    Yang, Chuluo
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (07) : 2732 - 2758
  • [42] The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors
    Li, Qian
    Wang, Rui
    Zhang, Chunfeng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (12): : 3031 - 3038
  • [43] High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability
    Zhang, Cai'e
    Ming, Shouli
    Wu, Hongbo
    Wang, Xiaodong
    Huang, Hao
    Xue, Wenyue
    Xu, Xinjun
    Tang, Zheng
    Ma, Wei
    Bo, Zhishan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) : 22907 - 22917
  • [44] A new perspective for organic solar cells: triplet nonfullerene acceptors
    Xiaowei Zhan
    Yongfang Li
    Science China Chemistry, 2018, 61 : 637 - 638
  • [45] A new perspective for organic solar cells: triplet nonfullerene acceptors
    Zhan, Xiaowei
    Li, Yongfang
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (06) : 637 - 638
  • [46] Rhodanine-based nonfullerene acceptors for organic solar cells
    Liu, Hongtao
    Li, Zhong'an
    Zhao, Dongbing
    SCIENCE CHINA-MATERIALS, 2019, 62 (11) : 1574 - 1596
  • [47] Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells
    Li, Chao
    Fu, Huiting
    Xia, Tian
    Sun, Yanming
    ADVANCED ENERGY MATERIALS, 2019, 9 (25)
  • [48] A new perspective for organic solar cells: triplet nonfullerene acceptors
    Xiaowei Zhan
    Yongfang Li
    Science China(Chemistry), 2018, 61 (06) : 637 - 638
  • [49] A new perspective for organic solar cells: triplet nonfullerene acceptors
    Xiaowei Zhan
    Yongfang Li
    Science China(Chemistry), 2018, (06) : 637 - 638
  • [50] Versatile π-bridges in nonfullerene electron acceptors of organic solar cells
    Feng, Fan
    Wang, Pengchao
    Li, Yonghai
    Bao, Xichang
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (18) : 3855 - 3878