Deep learning enabled multi-organ segmentation of mouse embryos

被引:4
|
作者
Rolfe, S. M. [1 ]
Whikehart, S. M. [1 ]
Maga, A. M. [1 ,2 ]
机构
[1] Seattle Childrens Res Inst, Ctr Dev Biol & Regenerat Med, Seattle, WA 98101 USA
[2] Univ Washington, Dept Pediat, Seattle, WA 98105 USA
来源
BIOLOGY OPEN | 2023年 / 12卷 / 02期
基金
美国国家卫生研究院;
关键词
Segmentation; Deep learning; Embryo; Micro-CT; Mouse; Automated; ATLAS; PROPAGATION; VALIDATION; CT;
D O I
10.1242/bio.059698
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The International Mouse Phenotyping Consortium (IMPC) has generated a large repository of three-dimensional (3D) imaging data from mouse embryos, providing a rich resource for investigating phenotype/genotype interactions. While the data is freely available, the computing resources and human effort required to segment these images for analysis of individual structures can create a significant hurdle for research. In this paper, we present an open source, deep learning-enabled tool, Mouse Embryo Multi-Organ Segmentation (MEMOS), that estimates a segmentation of 50 anatomical structures with a support for manually reviewing, editing, and analyzing the estimated segmentation in a single application. MEMOS is implemented as an extension on the 3D Slicer platform and is designed to be accessible to researchers without coding experience. We validate the performance of MEMOS-generated segmentations through comparison to state-of-the-art atlas-based segmentation and quantification of previously reported anatomical abnormalities in a Cbx4 knockout strain.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Using probability maps for multi-organ automatic segmentation
    20142317793596
    (1) University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland; (2) Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland; (3) Medical Informatics, University Hospitals, University of Geneva, Geneva, Switzerland, 1600, (Springer Verlag):
  • [42] Abdominal Multi-organ Segmentation Using CNN and Transformer
    Xin, Rui
    Wang, Lisheng
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 270 - 280
  • [43] Ensemble Methods for Multi-Organ Segmentation in CT series
    Crespi, Leonardo
    Roncaglioni, Paolo
    Dei, Damiano
    Franzese, Ciro
    Lambri, Nicola
    Loiacono, Daniele
    Mancosu, Pietro
    Scorsetti, Marta
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 505 - 510
  • [44] Multi-organ Segmentation Based on 2.5D Semi-supervised Learning
    Chen, Hao
    Zhang, Wen
    Yan, Xiaochao
    Chen, Yanbin
    Chen, Xin
    Wu, Mengjun
    Pan, Lin
    Zheng, Shaohua
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13816 LNCS : 74 - 86
  • [45] Multi-Organ Segmentation on An Inference-Combined Dataset
    Marschall, T.
    Li, X.
    Yang, K.
    Liu, B.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [46] Tailored multi-organ segmentation with model adaptation and ensemble
    Dong, Jiahua
    Cheng, Guohua
    Zhang, Yue
    Peng, Chengtao
    Song, Yu
    Tong, Ruofeng
    Lin, Lanfen
    Chen, Yen-Wei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 166
  • [47] Multi-organ Segmentation in CT from Partially Annotated Datasets using Disentangled Learning
    Wang, Tianyi
    Liu, Chang
    Rist, Leonhard
    Maier, Andreas
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 291 - 296
  • [48] Multi-organ Segmentation Based on 2.5D Semi-supervised Learning
    Chen, Hao
    Zhang, Wen
    Yan, Xiaochao
    Chen, Yanbin
    Chen, Xin
    Wu, Mengjun
    Pan, Lin
    Zheng, Shaohua
    FAST AND LOW-RESOURCE SEMI-SUPERVISED ABDOMINAL ORGAN SEGMENTATION, FLARE 2022, 2022, 13816 : 74 - 86
  • [49] Multi-Modal Learning from Unpaired Images: Application to Multi-Organ Segmentation in CT and MRI
    Valindria, Vanya V.
    Pawlowski, Nick
    Rajchl, Martin
    Lavdas, Ioannis
    Aboagye, Eric O.
    Rockall, Andrea G.
    Rueckert, Daniel
    Glocker, Ben
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 547 - 556
  • [50] Abdominal multi-organ segmentation with organ-attention networks and statistical fusion
    Wang, Yan
    Zhou, Yuyin
    Shen, Wei
    Park, Seyoun
    Fishman, Elliot K.
    Yuille, Alan L.
    MEDICAL IMAGE ANALYSIS, 2019, 55 : 88 - 102