Deep learning enabled multi-organ segmentation of mouse embryos

被引:4
|
作者
Rolfe, S. M. [1 ]
Whikehart, S. M. [1 ]
Maga, A. M. [1 ,2 ]
机构
[1] Seattle Childrens Res Inst, Ctr Dev Biol & Regenerat Med, Seattle, WA 98101 USA
[2] Univ Washington, Dept Pediat, Seattle, WA 98105 USA
来源
BIOLOGY OPEN | 2023年 / 12卷 / 02期
基金
美国国家卫生研究院;
关键词
Segmentation; Deep learning; Embryo; Micro-CT; Mouse; Automated; ATLAS; PROPAGATION; VALIDATION; CT;
D O I
10.1242/bio.059698
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The International Mouse Phenotyping Consortium (IMPC) has generated a large repository of three-dimensional (3D) imaging data from mouse embryos, providing a rich resource for investigating phenotype/genotype interactions. While the data is freely available, the computing resources and human effort required to segment these images for analysis of individual structures can create a significant hurdle for research. In this paper, we present an open source, deep learning-enabled tool, Mouse Embryo Multi-Organ Segmentation (MEMOS), that estimates a segmentation of 50 anatomical structures with a support for manually reviewing, editing, and analyzing the estimated segmentation in a single application. MEMOS is implemented as an extension on the 3D Slicer platform and is designed to be accessible to researchers without coding experience. We validate the performance of MEMOS-generated segmentations through comparison to state-of-the-art atlas-based segmentation and quantification of previously reported anatomical abnormalities in a Cbx4 knockout strain.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Deep learning-enabled multi-organ segmentation in whole-body mouse scans
    Oliver Schoppe
    Chenchen Pan
    Javier Coronel
    Hongcheng Mai
    Zhouyi Rong
    Mihail Ivilinov Todorov
    Annemarie Müskes
    Fernando Navarro
    Hongwei Li
    Ali Ertürk
    Bjoern H. Menze
    Nature Communications, 11
  • [2] Deep learning-enabled multi-organ segmentation in whole-body mouse scans
    Schoppe, Oliver
    Pan, Chenchen
    Coronel, Javier
    Mai, Hongcheng
    Rong, Zhouyi
    Todorov, Mihail Ivilinov
    Muskes, Annemarie
    Navarro, Fernando
    Li, Hongwei
    Ertuerk, Ali
    Menze, Bjoern H.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Multi-Organ Gland Segmentation Using Deep Learning
    Binder, Thomas
    Tantaoui, El Mehdi
    Pati, Pushpak
    Catena, Raul
    Set-Aghayan, Ago
    Gabrani, Maria
    FRONTIERS IN MEDICINE, 2019, 6
  • [4] Deep Learning Architectures and Techniques for Multi-organ Segmentation
    Ogrean, Valentin
    Dorobantiu, Alexandra
    Brad, Remus
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (01) : 28 - 35
  • [5] A review of deep learning based methods for medical image multi-organ segmentation
    Fu, Yabo
    Lei, Yang
    Wang, Tonghe
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 85 : 107 - 122
  • [6] An explainable deep learning pipeline for multi-modal multi-organ medical image segmentation
    Mylona, E.
    Zaridis, D.
    Grigoriadis, G.
    Tachos, N.
    Fotiadis, D. I.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S275 - S276
  • [7] Class-incremental learning for multi-organ segmentation
    Chen, Junyu
    Frey, Eric
    Du, Yong
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63
  • [8] Continual Learning for Abdominal Multi-organ and Tumor Segmentation
    Zhang, Yixiao
    Li, Xinyi
    Chen, Huimiao
    Yuille, Alan L.
    Liu, Yaoyao
    Zhou, Zongwei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 35 - 45
  • [9] Discriminative dictionary learning for abdominal multi-organ segmentation
    Tong, Tong
    Wolz, Robin
    Wang, Zehan
    Gao, Qinquan
    Misawa, Kazunari
    Fujiwara, Michitaka
    Mori, Kensaku
    Hajnal, Joseph V.
    Rueckert, Daniel
    MEDICAL IMAGE ANALYSIS, 2015, 23 (01) : 92 - 104
  • [10] Deep Learning-based Multi-organ CT Segmentation with Adversarial Data Augmentation
    Pan, Shaoyan
    Lo, Shao-Yuan
    Huang, Min
    Ma, Chaoqiong
    Wynne, Jacob
    Wang, Tonghe
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2023, 2023, 12464