Resource mining from stainless steel pickling wastewater to produce metal-organic frameworks

被引:40
|
作者
Zhao, Xudong [1 ]
Zhang, Chengwei [1 ]
Liu, Baosheng [2 ]
Zhao, Huifang [3 ]
Gao, Xinli [4 ]
Wang, Yuanyang [1 ]
Zhang, Yuezhong [1 ]
Liu, Dahuan [3 ]
Wang, Chong-Chen [5 ]
机构
[1] Taiyuan Univ Sci & Technol, Coll Chem & Biol Engn, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Sci & Technol, Coll Mat Sci & Engn, Engn Res Ctr Magnesium Alloy Shanxi Prov, Taiyuan 030024, Peoples R China
[3] Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[4] Taiyuan Univ Sci & Technol, Instrumental Anal Ctr, Taiyuan 030024, Peoples R China
[5] Beijing Univ Civil Engn & Architecture, Beijing Key Lab Funct Mat Bldg Struct & Environm R, Beijing 100044, Peoples R China
关键词
Stainless steel pickling wastewater; Metal -organic framework; Selective crystallization; Resource recycling; AQUEOUS-SOLUTION; EFFECTIVE REMOVAL; ADSORPTION; MIL-100(FE); EQUILIBRIUM; DEGRADATION; CARBOXYLATE; SEPARATION; ZIRCONIUM; MIXTURES;
D O I
10.1016/j.resconrec.2022.106647
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal-organic frameworks (MOFs) exhibit large potential in many fields while the high cost limits their large-scale use. Herein, stainless steel pickling wastewater was successfully transformed to Fe/Cr-MIL-100, during which Ni2+ was largely purified. As an integration of metal, solvent and acid modifier, the use of the wastewater simplifies the preparation units and reduces the cost of MOFs. Conversion of the pickling wastewater to MOFs is feasible under wide reaction conditions and is not interfered by discharge batch of the wastewater. The obtained MIL-100 s products exhibit excellent porosity, long-term acid/base stability, and large adsorption capacities for methylene blue, moxifloxacin hydrochloride, and zirconium (IV) ion. Thus, our work provides a new insight for effective reuse of industrial wastewater and a feasible method for reducing MOFs cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Plasmonic metal-organic frameworks
    Zheng, Guangchao
    Pastoriza-Santos, Isabel
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    SMARTMAT, 2021, 2 (04): : 446 - 465
  • [42] Metal-organic frameworks: The pressure is on
    PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Paris, France
    Acta Crystallogr. Sect. B Struct. Sci. Crys. Eng. Mater., (585-586):
  • [43] Gyroidal Metal-Organic Frameworks
    Zhou, Xiao-Ping
    Li, Mian
    Liu, Jie
    Li, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 67 - 70
  • [44] Quantum Metal-Organic Frameworks
    Huang, Zhehao
    Geilhufe, Richard Matthias
    SMALL SCIENCE, 2024, 4 (10):
  • [45] Critical Perspectives on Metal-Organic Frameworks and Their Composites for the Adsorptive Removal of Antibiotics from Wastewater Matrices
    Mukherjee, Debolina
    Behera, Janaki
    Mondal, Supriya
    Pal, Shyam Chand
    Volkmer, Dirk
    Das, Madhab C.
    CRYSTAL GROWTH & DESIGN, 2023, 23 (11) : 7612 - 7634
  • [46] Metal-Organic Frameworks in Motion
    Terzopoulou, Anastasia
    Nicholas, James D.
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Pane, Salvador
    Puigmarti-Luis, Josep
    CHEMICAL REVIEWS, 2020, 120 (20) : 11175 - 11193
  • [47] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586
  • [48] Introduction to Metal-Organic Frameworks
    Zhou, Hong-Cai
    Long, Jeffrey R.
    Yaghi, Omar M.
    CHEMICAL REVIEWS, 2012, 112 (02) : 673 - 674
  • [49] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096
  • [50] Lanthanide metal-organic frameworks
    Borovkov, Victor
    FRONTIERS IN CHEMISTRY, 2015, 3