Parallel Convolutional Neural Networks and Transfer Learning for Classifying Landforms in Satellite Images

被引:2
|
作者
Atik, Ipek [1 ]
机构
[1] Gaziantep Islam Sci & Technol Univ, Dept Elect & Elect Engn, TR-27000 Gaziantep, Turkiye
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 01期
关键词
Remote Sensing; Satellite Imagery; Transfer Learning; Machine Learning; Classification; CLASSIFICATION;
D O I
10.5755/j01.itc.52.1.31779
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of remote sensing has great potential for detecting many natural differences, such as disasters, climate changes, and urban changes. Due to technological advances in imaging, remote sensing has become an increasingly popular topic. One of the significant benefits of technological advancement has been the ease with which remote sensing data is now accessible. Physical and spatial information is detected by remote sensing, which can be described as the process of identifying distinctive characteristics of an environment. Resolution is one of the most important factors influencing the success of the detection processes. As a result of the resolution being below the necessary level, features of the objects to be differentiated become incomprehensible and therefore constitute a significant barrier to differentiation. The use of deep learning methods for classifying remote sensing data has become prevalent and successful in recent years. This study classified Satellite images using deep learning and machine learning methods. Based on the transfer learning strategy, a parallel convolutional neural network (CNN) was designed in the study. To improve the feature mapping of an image, convolutional branches use pre-trained knowledge of the transmitted network. Using the offline augmentation method, the raw data set was balanced to overcome its unbalanced class distribution and increased network performance. A total of 35 classes of landforms have been studied in the experiments. The accuracy value of the developed model in the classification study of landforms was 97.84%. According to experimental results, the proposed method provides high classification accuracy in detecting landforms and outperforms existing studies.
引用
收藏
页码:228 / 244
页数:17
相关论文
共 50 条
  • [41] Typical Target Detection In Satellite Images Based On Convolutional Neural Networks
    Wu, Hui
    Zhang, Hui
    Zhang, Jinfang
    Xu, Fanjiang
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 2956 - 2961
  • [42] Evaluation of Convolutional Neural Networks for Urban Mapping Using Satellite Images
    Mina Mohammadi
    Alireza Sharifi
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 2125 - 2131
  • [43] Evaluation of Convolutional Neural Networks for Urban Mapping Using Satellite Images
    Mohammadi, Mina
    Sharifi, Alireza
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (09) : 2125 - 2131
  • [44] Plant identification with convolutional neural networks and transfer learning
    Karahan, Tolgahan
    Nabiyev, Vasif
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2021, 27 (05): : 638 - 645
  • [45] A Case Study on Transfer Learning in Convolutional Neural Networks
    Gurkaynak, Cahit Deniz
    Arica, Nafiz
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [46] Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
    Moldovan, Adrian
    Cataron, Angel
    Andonie, Razvan
    ENTROPY, 2021, 23 (09)
  • [47] Convolutional Neural Networks with Transfer Learning for Pneumonia Detection
    Iparraguirre-Villanueva, Orlando
    Guevara-Ponce, Victor
    Roque Paredes, Ofelia
    Sierra-Linan, Fernando
    Zapata-Paulini, Joselyn
    Cabanillas-Carbonell, Michael
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 544 - 551
  • [48] Convolutional Neural Networks for Steganalysis via Transfer Learning
    Tian, Juan
    Li, Yingxiang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (02)
  • [49] Transfer Learning for Leaf Classification with Convolutional Neural Networks
    Esmaeili, Hassan
    Phoka, Thanathorn
    2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 191 - 196
  • [50] Transfer Learning on Convolutional Neural Networks for Dog Identification
    Tu, Xinyuan
    Lai, Kenneth
    Yanushkevich, Svetlana
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 357 - 36a