Tilting pairs and Wakamatsu tilting subcategories over triangular matrix algebras

被引:2
|
作者
Zhang, Yafeng [1 ]
Ma, Yajun [2 ]
Zhao, Tiwei [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Triangular matrix algebra; tilting pair; Wakamatsu tiling subcategory; GORENSTEIN-PROJECTIVE-MODULES; CATEGORIES;
D O I
10.1515/gmj-2023-2013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be Artin algebras and let M be an (A, B)-bimodule with M-A and M-B finitely generated. In this paper, we construct tilting pairs of subcategories and Wakamatsu tilting subcategories over an upper triangular matrix Artin algebra Lambda = ((A)(M)(0)(B)) using tilting pairs andWakamatsu tiling subcategories over A and B. Let C be a subcategory of A-mod and let D be a subcategory of B-mod. Consider the subcategory of left Lambda-modules B-D(C) = {((X)(Y))(f) : f is a monomorphism, Y is an element of D and Coker f is an element of C}. We prove the following results: (1) Assume that M circle times(B) T ' subset of T, M circle times(B) C ' subset of C and Tor(i)(B) (M, T ') = 0 for all i >= 1. Then (C, T) and (C ', T ') are n-tilting pairs respectively in A-mod and B-mod if and only if (B-C '(C), B-T '(T)) is an n-tilting pair in Lambda-mod. (2) Assume that M circle times(B) V subset of W and Tor(i)(B) (M, V-perpendicular to) = 0 for all i >= 1. If W and V are Wakamatsu tilting subcategories respectively in A-mod and B-mod, then B-V(W) is aWakamatsu tilting subcategory in Lambda-mod.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 50 条
  • [41] HOMOLOGICAL PROPERTIES OF SEMI-WAKAMATSU-TILTING MODULES
    Liu, Dajun
    Wei, Jiaqun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 781 - 802
  • [42] Tilting cotorsion pairs
    Bazzoni, S
    Eklof, PC
    Trlifaj, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 683 - 696
  • [44] Tilting Modules and Support τ-Tilting Modules over Preprojective Algebras Associated with Symmetrizable Cartan Matrices
    Changjian Fu
    Shengfei Geng
    Algebras and Representation Theory, 2019, 22 : 1239 - 1260
  • [45] Tilting Modules and Support τ-Tilting Modules over Preprojective Algebras Associated with Symmetrizable Cartan Matrices
    Fu, Changjian
    Geng, Shengfei
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (05) : 1239 - 1260
  • [46] Relative cluster tilting subcategories in an extriangulated category
    Zhang, Zhen
    Wang, Shance
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1613 - 1624
  • [47] Recollements and n-cluster tilting subcategories
    Long, Taolue
    Zhang, Xiaoxiang
    Zhou, Yukun
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 4046 - 4058
  • [48] nZ-Gorenstein cluster tilting subcategories
    Asadollahi, Javad
    Hafezi, Rasool
    Sadeghi, Somayeh
    JOURNAL OF ALGEBRA, 2021, 580 : 127 - 157
  • [49] Extending (τ-)tilting subcategories and (co)silting modules
    Asadollahi, J.
    Padashnik, F.
    Sadeghi, S.
    Treffinger, H.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 2148 - 2166
  • [50] TILTING WILD ALGEBRAS
    KERNER, O
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 29 - 47