Tilting pairs and Wakamatsu tilting subcategories over triangular matrix algebras

被引:2
|
作者
Zhang, Yafeng [1 ]
Ma, Yajun [2 ]
Zhao, Tiwei [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Triangular matrix algebra; tilting pair; Wakamatsu tiling subcategory; GORENSTEIN-PROJECTIVE-MODULES; CATEGORIES;
D O I
10.1515/gmj-2023-2013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be Artin algebras and let M be an (A, B)-bimodule with M-A and M-B finitely generated. In this paper, we construct tilting pairs of subcategories and Wakamatsu tilting subcategories over an upper triangular matrix Artin algebra Lambda = ((A)(M)(0)(B)) using tilting pairs andWakamatsu tiling subcategories over A and B. Let C be a subcategory of A-mod and let D be a subcategory of B-mod. Consider the subcategory of left Lambda-modules B-D(C) = {((X)(Y))(f) : f is a monomorphism, Y is an element of D and Coker f is an element of C}. We prove the following results: (1) Assume that M circle times(B) T ' subset of T, M circle times(B) C ' subset of C and Tor(i)(B) (M, T ') = 0 for all i >= 1. Then (C, T) and (C ', T ') are n-tilting pairs respectively in A-mod and B-mod if and only if (B-C '(C), B-T '(T)) is an n-tilting pair in Lambda-mod. (2) Assume that M circle times(B) V subset of W and Tor(i)(B) (M, V-perpendicular to) = 0 for all i >= 1. If W and V are Wakamatsu tilting subcategories respectively in A-mod and B-mod, then B-V(W) is aWakamatsu tilting subcategory in Lambda-mod.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 50 条
  • [1] Wakamatsu tilting subcategories and tilting pairs over trivial ring extensions
    Zhang, Zhen
    Wang, Shance
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [2] Wakamatsu tilting pairs
    Sun, Juxiang
    Zhao, Guoqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (07)
  • [3] τ-Tilting modules over triangular matrix artin algebras
    Peng, Yeyang
    Ma, Xin
    Huang, Zhaoyong
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (04) : 639 - 661
  • [4] τ-tilting finite triangular matrix algebras
    Aihara, Takuma
    Honma, Takahiro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (12)
  • [5] Wakamatsu tilting modules over ring extension
    Zhang, Zhen
    Wei, Jiaqun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (10)
  • [6] Wakamatsu tilting modules
    Mantese, F
    Reiten, I
    JOURNAL OF ALGEBRA, 2004, 278 (02) : 532 - 552
  • [7] nZ-cluster tilting subcategories for Nakayama algebras
    Herschend, Martin
    Kvamme, Sondre
    Vaso, Laertis
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (02)
  • [8] n-tilting pairs and n-cotilting subcategories over comma categories
    Yuan, Yuan
    He, Jian
    Wu, Dejun
    Wang, Yongduo
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [9] Wakamatsu tilting模的性质
    邢建民
    李秀丽
    科学技术与工程, 2009, 9 (02) : 360 - 361
  • [10] ∞-Tilting Subcategories in Extriangulated Categories
    Zhang, Zhen
    Wei, Jiaqun
    Wang, Shance
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2024, 45 (01) : 151 - 160