Controlled-NOT Gate Based on the Rydberg States of Surface Electrons

被引:1
|
作者
Wang, Jun [1 ]
He, Wan-Ting [1 ]
Lu, Cong-Wei [1 ]
Wang, Yang-Yang [2 ]
Ai, Qing [1 ]
Wang, Hai-Bo [1 ]
机构
[1] Beijing Normal Univ, Appl Optic Beijing Area Major Lab, Dept Phys, Beijing 100875, Peoples R China
[2] Xijing Univ, Sch Elect Informat, Shaanxi Engn Res Ctr Controllable Neutron Source, Xian 710123, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
electromagnetically induced transparency; quantum gate; Rydberg states; surface electrons; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; EFFICIENT QUANTUM SIMULATION; SUPERCONDUCTING CIRCUITS; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; INFORMATION; OPERATION; HELIUM; OPTICS; QUTIP;
D O I
10.1002/andp.202300138
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect 2D platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Quantum controlled-not gate in the bad cavity regime
    Zhao-Hui Peng
    Le-Man Kuang
    Jian Zou
    Yu-Qing Zhang
    Xiao-Juan Liu
    Quantum Information Processing, 2015, 14 : 2833 - 2846
  • [22] Demonstration of a quantum controlled-NOT gate in the telecommunications band
    Chen, Jun
    Altepeter, Joseph B.
    Medic, Milja
    Lee, Kim Fook
    Gokden, Burc
    Hadfield, Robert H.
    Nam, Sae Woo
    Kumar, Prem
    PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [23] Rydberg-blockade controlled-NOT gate and entanglement in a two-dimensional array of neutral-atom qubits
    Maller, K. M.
    Lichtman, M. T.
    Xia, T.
    Sun, Y.
    Piotrowicz, M. J.
    Carr, A. W.
    Isenhower, L.
    Saffman, M.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [24] Quantum controlled-not gate in the bad cavity regime
    Peng, Zhao-Hui
    Kuang, Le-Man
    Zou, Jian
    Zhang, Yu-Qing
    Liu, Xiao-Juan
    QUANTUM INFORMATION PROCESSING, 2015, 14 (08) : 2833 - 2846
  • [25] A controlled-NOT gate for frequency-bin qubits
    Lu, Hsuan-Hao
    Lukens, Joseph M.
    Williams, Brian P.
    Imany, Poolad
    Peters, Nicholas A.
    Weiner, Andrew M.
    Lougovski, Pavel
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [26] A controlled-NOT gate for frequency-bin qubits
    Hsuan-Hao Lu
    Joseph M. Lukens
    Brian P. Williams
    Poolad Imany
    Nicholas A. Peters
    Andrew M. Weiner
    Pavel Lougovski
    npj Quantum Information, 5
  • [27] Realization of quantum controlled-NOT gate with resonant interaction
    Zhan, Zhi-Ming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 385 (02) : 781 - 785
  • [28] Realization of the Cirac–Zoller controlled-NOT quantum gate
    Ferdinand Schmidt-Kaler
    Hartmut Häffner
    Mark Riebe
    Stephan Gulde
    Gavin P. T. Lancaster
    Thomas Deuschle
    Christoph Becher
    Christian F. Roos
    Jürgen Eschner
    Rainer Blatt
    Nature, 2003, 422 : 408 - 411
  • [29] Demonstration of a Neutral Atom Controlled-NOT Quantum Gate
    Isenhower, L.
    Urban, E.
    Zhang, X. L.
    Gill, A. T.
    Henage, T.
    Johnson, T. A.
    Walker, T. G.
    Saffman, M.
    PHYSICAL REVIEW LETTERS, 2010, 104 (01)
  • [30] Quantum controlled-NOT gate with 'hot' trapped ions
    Schneider, S
    James, DFV
    Milburn, GJ
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 499 - 505