Controlled-NOT Gate Based on the Rydberg States of Surface Electrons

被引:1
|
作者
Wang, Jun [1 ]
He, Wan-Ting [1 ]
Lu, Cong-Wei [1 ]
Wang, Yang-Yang [2 ]
Ai, Qing [1 ]
Wang, Hai-Bo [1 ]
机构
[1] Beijing Normal Univ, Appl Optic Beijing Area Major Lab, Dept Phys, Beijing 100875, Peoples R China
[2] Xijing Univ, Sch Elect Informat, Shaanxi Engn Res Ctr Controllable Neutron Source, Xian 710123, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
electromagnetically induced transparency; quantum gate; Rydberg states; surface electrons; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; EFFICIENT QUANTUM SIMULATION; SUPERCONDUCTING CIRCUITS; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; INFORMATION; OPERATION; HELIUM; OPTICS; QUTIP;
D O I
10.1002/andp.202300138
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Due to the long coherence time and efficient manipulation, the surface electron (SE) provides a perfect 2D platform for quantum computation and quantum simulation. In this work, a theoretical scheme to realize the controlled-NOT gate is proposed, where the two-qubit system is encoded on the four-level Rydberg structure of SE. The state transfer is achieved by a three-level structure with an intermediate level. By simultaneously driving the SE with two external electromagnetic fields, the dark state in the electromagnetically induced transparency effect is exploited to suppress the population of the most dissipative state and increase the robustness against dissipation. The fidelity of the scheme is 0.9989 with experimentally achievable parameters.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fibre implementation of a Controlled-NOT gate
    Fulconis, J.
    Clark, A.
    Rarity, J. G.
    O'Brien, J. L.
    Wadsworth, W. J.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3171 - +
  • [2] Universal quantum Controlled-NOT gate
    M. Siomau
    S. Fritzsche
    The European Physical Journal D, 2010, 60 : 417 - 421
  • [3] Universal quantum Controlled-NOT gate
    Siomau, M.
    Fritzsche, S.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (02): : 417 - 421
  • [4] Quantum controlled-NOT gate based on a single quantum dot
    Molotkov, S.N.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1996, 64 (03):
  • [5] Quantum controlled-NOT gate based on a single quantum dot
    Molotkov, SN
    JETP LETTERS, 1996, 64 (03) : 237 - 243
  • [6] Transition Slow-Down by Rydberg Interaction of Neutral Atoms and a Fast Controlled-NOT Quantum Gate
    Shi, Xiao-Feng
    PHYSICAL REVIEW APPLIED, 2020, 14 (05):
  • [7] Controlled-NOT gate operating with single photons
    Pooley, M. A.
    Ellis, D. J. P.
    Patel, R. B.
    Bennett, A. J.
    Chan, K. H. A.
    Farrer, I.
    Ritchie, D. A.
    Shields, A. J.
    APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [8] Quantum process tomography of a controlled-NOT gate
    O'Brien, JL
    Pryde, GJ
    Gilchrist, A
    James, DFV
    Langford, NK
    Ralph, TC
    White, AG
    PHYSICAL REVIEW LETTERS, 2004, 93 (08) : 080502 - 1
  • [9] Adiabatic controlled-NOT gate for quantum computation
    Averin, DV
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 413 - 425
  • [10] Controlled-NOT logic gate for phase qubits based on conditional spectroscopy
    Joydip Ghosh
    Michael R. Geller
    Quantum Information Processing, 2012, 11 : 1349 - 1357