Deep learning methods for fully automated dental age estimation on orthopantomograms

被引:2
|
作者
Shi, Yuchao [1 ]
Ye, Zelin [1 ]
Guo, Jixiang [2 ]
Tang, Yueting [1 ]
Dong, Wenxuan [2 ]
Dai, Jiaqi [3 ]
Miao, Yu [1 ]
You, Meng [1 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Dept Oral Med Imaging,State Key Lab Oral Dis, 3rd Sect South Renmin Rd 14, Chengdu 610041, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
[3] Sichuan Hosp Stomatol, Dept Oral Radiol, Chengdu 610015, Peoples R China
关键词
Dental age; Deep learning; Artificial intelligence; Orthopantomogram; Radiography; ADOLESCENTS; DEVELOPMENT; REFERENCE DATASET; DATA SET; CHILDREN; RDS;
D O I
10.1007/s00784-024-05598-2
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
ObjectivesThis study aimed to use all permanent teeth as the target and establish an automated dental age estimation method across all developmental stages of permanent teeth, accomplishing all the essential steps of tooth determination, tooth development staging, and dental age assessment.MethodsA three-step framework for automatically estimating dental age was developed for children aged 3 to 15. First, a YOLOv3 network was employed to complete the tasks of tooth localization and numbering on a digital orthopantomogram. Second, a novel network named SOS-Net was established for accurate tooth development staging based on a modified Demirjian method. Finally, the dental age assessment procedure was carried out through a single-group meta-analysis utilizing the statistical data derived from our reference dataset.ResultsThe performance tests showed that the one-stage YOLOv3 detection network attained an overall mean average precision 50 of 97.50 for tooth determination. The proposed SOS-Net method achieved an average tooth development staging accuracy of 82.97% for a full dentition. The dental age assessment validation test yielded an MAE of 0.72 years with a full dentition (excluding the third molars) as its input.ConclusionsThe proposed automated framework enhances the dental age estimation process in a fast and standard manner, enabling the reference of any accessible population.Clinical relevanceThe tooth development staging network can facilitate the precise identification of permanent teeth with abnormal growth, improving the effectiveness and comprehensiveness of dental diagnoses using pediatric orthopantomograms.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Age Estimation from Left-Hand Radiographs with Deep Learning Methods
    Ozdemir, Cuneyt
    Gedik, Mehmet Ali
    Kaya, Yilmaz
    TRAITEMENT DU SIGNAL, 2021, 38 (06) : 1565 - 1574
  • [22] Fully Automated Segmentation of 33 Abdominal Structures Using Deep Learning - Implications for Radiotherapy Dose Estimation
    Weston, A.
    Korfiatis, P.
    Philbrick, K.
    Kostandy, P.
    Zeinoddini, A.
    Boonrod, A.
    Takahashi, N.
    Moynagh, M.
    Erickson, B.
    MEDICAL PHYSICS, 2019, 46 (06) : E346 - E346
  • [23] Deep learning for biological age estimation
    Rahman, Syed Ashiqur
    Giacobbi, Peter
    Pyles, Lee
    Mullett, Charles
    Doretto, Gianfranco
    Adjeroh, Donald A.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (02) : 1767 - 1781
  • [24] Age estimation using deep learning
    Zaghbani, Soumaya
    Boujneh, Noureddine
    Bouhlel, Med Salim
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 68 : 337 - 347
  • [25] AGE ESTIMATION BASED ON THE STAGE OF MINERALIZATION OF THIRD MOLARS ON ORTHOPANTOMOGRAMS
    Tonin, Leticia de Oliveira
    Pittelli Leite, Noemia Luisa
    Galo, Rodrigo
    Alves da Silva, Ricardo Henrique
    BIOSCIENCE JOURNAL, 2016, 32 (03): : 805 - 812
  • [26] Assessment of deep learning technique for fully automated mandibular segmentation
    Yurdakurban, Ebru
    Sukut, Yagizalp
    Duran, Gokhan Serhat
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2025, 167 (02) : 242 - 249
  • [27] Fully automated esophagus segmentation with a hierarchical deep learning approach
    Trullo, Roger
    Petitjean, Caroline
    Nie, Dong
    Shen, Dinggang
    Ruan, Su
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 503 - 506
  • [28] Deep learning for the fully automated segmentation of the inner ear on MRI
    Akshayaa Vaidyanathan
    Marly F. J. A. van der Lubbe
    Ralph T. H. Leijenaar
    Marc van Hoof
    Fadila Zerka
    Benjamin Miraglio
    Sergey Primakov
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek
    Hammer Sebastiaan
    Patrick F. M. Dammeijer
    Vincent van Rompaey
    Henry C. Woodruff
    Wim Vos
    Seán Walsh
    Raymond van de Berg
    Philippe Lambin
    Scientific Reports, 11
  • [29] Deep learning for the fully automated segmentation of the inner ear on MRI
    Vaidyanathan, Akshayaa
    van der Lubbe, Marly F. J. A.
    Leijenaar, Ralph T. H.
    van Hoof, Marc
    Zerka, Fadila
    Miraglio, Benjamin
    Primakov, Sergey
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek, Monique A. L.
    Sebastiaan, Hammer
    Dammeijer, Patrick F. M.
    van Rompaey, Vincent
    Woodruff, Henry C.
    Vos, Wim
    Walsh, Sean
    van de Berg, Raymond
    Lambin, Philippe
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] A Fully Automated Deep Learning Network for Brain Tumor Segmentation
    Yogananda, Chandan Ganesh Bangalore
    Shah, Bhavya R.
    Vejdani-Jahromi, Maryam
    Nalawade, Sahil S.
    Murugesan, Gowtham K.
    Yu, Frank F.
    Pinho, Marco C.
    Wagner, Benjamin C.
    Emblem, Kyrre E.
    Bjornerud, Atle
    Fei, Baowei
    Madhuranthakam, Ananth J.
    Maldjian, Joseph A.
    TOMOGRAPHY, 2020, 6 (02) : 186 - 193