Adversarial Manifold Estimation

被引:1
|
作者
Aamari, Eddie [1 ]
Knop, Alexander [2 ]
机构
[1] Univ Paris Cite, Sorbonne Univ, CNRS, LPSM, Paris, France
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Manifold estimation; Statistical queries; Reach; Geometric inference; SPACE; RATES; NOISE;
D O I
10.1007/s10208-022-09588-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies the statistical query (SQ) complexity of estimating d-dimensional submanifolds in R-n. We propose a purely geometric algorithm called manifold propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial STAT(tau) oracle and a target Hausdorff distance precision epsilon = Omega(tau(2/(d+1))), the resulting SQ manifold reconstruction algorithm has query complexity (O) over tilde (n epsilon(-d/2)), which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ's and lower bounds for randomized SQ estimators in general metric spaces.
引用
收藏
页码:1 / 97
页数:97
相关论文
共 50 条
  • [31] A Speech Adversarial Sample Detection Method Based on Manifold Learning
    Ma, Xiao
    Xu, Dongliang
    Yang, Chenglin
    Li, Panpan
    Li, Dong
    MATHEMATICS, 2024, 12 (08)
  • [32] An Adversarial Approach to Structural Estimation
    Kaji, Tetsuya
    Manresa, Elena
    Pouliot, Guillaume
    ECONOMETRICA, 2023, 91 (06) : 2041 - 2063
  • [33] Statistical Query Complexity of Manifold Estimation
    Aamari, Eddie
    Knop, Alexander
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 116 - 122
  • [34] Structure-Adaptive Manifold Estimation
    Puchkin, Nikita
    Spokoiny, Vladimir
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 62
  • [35] Minimax adaptive estimation in manifold inference
    Divol, Vincent
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5888 - 5932
  • [36] Sparse Density Estimation on the Multinomial Manifold
    Hong, Xia
    Gao, Junbin
    Chen, Sheng
    Zia, Tanveer
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (11) : 2972 - 2977
  • [37] Multisensor Estimation Fusion on Statistical Manifold
    Chen, Xiangbing
    Zhou, Jie
    ENTROPY, 2022, 24 (12)
  • [38] Structure-Adaptive Manifold Estimation
    Puchkin, Nikita
    Spokoiny, Vladimir
    Journal of Machine Learning Research, 2022, 23
  • [39] Methods of density estimation on the Grassmann manifold
    Chikuse, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 354 (1-3) : 85 - 102
  • [40] Dimension Estimation and Topological Manifold Learning
    Tasaki, Hajime
    Lenz, Reiner
    Chao, Jinhui
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,