Prediction of Response to Neoadjuvant Chemoradiotherapy Combined with Pembrolizumab in Esophageal Squamous Cell Carcinoma with CT/FDG PET Radiomic Signatures Based on Machine Learning Classification

被引:0
|
作者
Qi, W. [1 ]
Li, S. [1 ]
Xiao, J. [2 ]
Zhang, W. [3 ]
Mo, Z. [2 ]
He, S. M. [4 ]
Li, H. [5 ]
Chen, J. [6 ]
Zhao, S. [6 ]
机构
[1] Shanghai Jiaotong Univ Sch Med, Ruijin Hosp, Dept Radiat Oncol, Shanghai, Peoples R China
[2] Shenzhen United Imaging Res Inst Innovat Med Equi, Shenzhen, Peoples R China
[3] Shanghai United Imaging Healthcare Technol Co Ltd, Shanghai, Peoples R China
[4] United Imaging Res Inst Intelligent Imaging, Beijing, Peoples R China
[5] Shanghai Jiaotong Univ Sch Med, Ruijin Hosp, Dept Thorac Surg, Shanghai, Peoples R China
[6] Shanghai Jiao Tong Univ Sch Med, Ruijin Hosp, Shanghai, Peoples R China
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2023年 / 117卷 / 02期
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2784
引用
收藏
页码:E358 / E359
页数:2
相关论文
共 50 条
  • [41] Prediction of Radiological Response for Head and Neck Cancer Combined Therapy Based on PET/CT Radiomic Signatures: A Preliminary Study
    Yue, Y. H.
    Chimmula, R. R.
    Huang, K. C.
    Njeh, C. F.
    Oderinde, O.
    MEDICAL PHYSICS, 2024, 51 (10) : 7935 - 7935
  • [42] Response Prediction Using 18F-FAPI-04 PET/CT in Patients with Esophageal Squamous Cell Carcinoma Treated with Concurrent Chemoradiotherapy
    Hu, Xinying
    Zhou, Tao
    Ren, Jiazhong
    Duan, Jinghao
    Wu, Hongbo
    Liu, Xiaoli
    Mu, Zhengshuai
    Liu, Ning
    Wei, Yuchun
    Yuan, Shuanghu
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64 (04) : 625 - 631
  • [43] Machine learning-based prediction of survival prognosis in esophageal squamous cell carcinoma
    Zhang, Kaijiong
    Ye, Bo
    Wu, Lichun
    Ni, Sujiao
    Li, Yang
    Wang, Qifeng
    Zhang, Peng
    Wang, Dongsheng
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] Combining the radiomic features and traditional parameters of 18F-FDG PET with clinical profiles to improve prognostic stratification in patients with esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy and surgery
    Yu-Hung Chen
    Kun-Han Lue
    Sung-Chao Chu
    Bee-Song Chang
    Ling-Yi Wang
    Dai-Wei Liu
    Shu-Hsin Liu
    Yin-Kai Chao
    Sheng-Chieh Chan
    Annals of Nuclear Medicine, 2019, 33 : 657 - 670
  • [45] CT Radiomics based on Machine Learning Predicting Pathologic Complete Response after Neoadjuvant Chemoradiotherapy for Esophageal Cancer
    Wang, Q.
    Lang, J.
    Li, T.
    Han, Y.
    Peng, L.
    Fang, Q.
    Yue, H.
    Cheng, J.
    Liu, J.
    Xiao, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E607 - E607
  • [46] Classification of Esophageal Adenocarcinoma, Esophageal Squamous Cell Carcinoma, and Stomach Adenocarcinoma Based on Machine Learning Algorithms
    Chen, Xiaoping
    Zheng, Lihui
    Yao, Jianqi
    Yang, Cheng-Fu
    SENSORS AND MATERIALS, 2021, 33 (08) : 2639 - 2654
  • [47] Combining the radiomic features and traditional parameters of 18F-FDG PET with clinical profiles to improve prognostic stratification in patients with esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy and surgery
    Chen, Yu-Hung
    Lue, Kun-Han
    Chu, Sung-Chao
    Chang, Bee-Song
    Wang, Ling-Yi
    Liu, Dai-Wei
    Liu, Shu-Hsin
    Chao, Yin-Kai
    Chan, Sheng-Chieh
    ANNALS OF NUCLEAR MEDICINE, 2019, 33 (09) : 657 - 670
  • [48] 18F-FLT PET/CT in Predicting Response to Chemoradiotherapy in Esophageal Squamous Cell Cancer: Comparison with 18F-FDG PET/CT
    Chen, Haojun
    Guo, Wei
    Guo, Xiuyu
    Bing Hao
    Luo Nana
    Dan Ruan
    Long Sun
    Hua Wu
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [49] Multimodality Deep Learning Radiomics Predicts Pathological Complete Response of Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy
    Liu, Y.
    Wang, Y.
    Pang, Q.
    Wang, X.
    Xue, L.
    Zhang, H.
    Hu, X.
    Ma, Z.
    Deng, H.
    Yang, Z. Y.
    Men, Y.
    Ye, F.
    Men, K.
    Qin, J.
    Bi, N.
    Zhang, J.
    Wang, Q.
    Hue, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E642 - E643
  • [50] FDG-PET in the prediction of pathologic response after neoadjuvant chemoradiotherapy in locally advanced, resectable esophageal cancer
    Song, SY
    Kim, JH
    Ryu, JS
    Lee, GTH
    Kim, SB
    Park, SI
    Song, HY
    Cho, KJ
    Ahn, SD
    Lee, SW
    Shin, SS
    Choi, EK
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (04): : 1053 - 1059