Asynchronous measurement-device-independent quantum key distribution with hybrid source

被引:5
|
作者
Bai, Jun-Lin [1 ,2 ]
Xie, Yuan-Mei [1 ,2 ]
Fu, Yao [3 ,4 ]
Yin, Hua-Lei [1 ,2 ]
Chen, Zeng-Bing [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Nanjing 210093, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/OL.491511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The linear constraint of secret key rate capacity is overcome by the twin-field quantum key distribution (QKD). However, the complex phase-locking and phase-tracking technique requirements throttle the real-life applications of the twin-field protocol. The asynchronous measurement-device-independent (AMDI) QKD, also called the mode-pairing QKD, protocol can relax the technical requirements and keep the similar performance of the twin-field protocol. Here, we propose an AMDI-QKD protocol with a nonclassical light source by changing the phase-randomized weak coherent state to a phase-randomized coherent-state superposition in the signal state time window. Simulation results show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol, while exhibiting robustness to imperfect modulation of nonclassical light sources. (c) 2023 Optica Publishing Group
引用
收藏
页码:3551 / 3554
页数:4
相关论文
共 50 条
  • [1] Measurement-Device-Independent Quantum Key Distribution
    S. P. Kulik
    S. N. Molotkov
    JETP Letters, 2023, 118 : 74 - 82
  • [2] Advantages of Asynchronous Measurement-Device-Independent Quantum Key Distribution in Intercity Networks
    Xie, Yuan -Mei
    Bai, Jun -Lin
    Lu, Yu-Shuo
    Weng, Chen-Xun
    Yin, Hua-Lei
    Chen, Zeng-Bing
    PHYSICAL REVIEW APPLIED, 2023, 19 (05)
  • [3] Practical asynchronous measurement-device-independent quantum key distribution with advantage distillation
    Luo, Di
    Liu, Xin
    Qin, Kaibiao
    Zhang, Zhenrong
    Wei, Kejin
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [4] Measurement-Device-Independent Quantum Key Distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Qi, Bing
    PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [5] Measurement-Device-Independent Quantum Key Distribution
    Kulik, S. P.
    Molotkov, S. N.
    JETP LETTERS, 2023, 118 (01) : 74 - 82
  • [6] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
    孙铭烁
    张春辉
    章睿
    周星宇
    李剑
    王琴
    Chinese Physics B, 2024, 33 (11) : 69 - 73
  • [7] Improved model on asynchronous measurement-device-independent quantum key distribution with realistic devices
    Sun, Mingshuo
    Zhang, Chun-Hui
    Zhang, Rui
    Zhou, Xing-Yu
    Li, Jian
    Wang, Qin
    CHINESE PHYSICS B, 2024, 33 (11)
  • [8] Key Expanding in Measurement-Device-Independent Quantum Key Distribution
    Georgi Bebrov
    International Journal of Theoretical Physics, 2021, 60 : 3566 - 3577
  • [9] Entanglement Measurement-Device-Independent Quantum Key Distribution
    Alshowkan, Muneer
    Elleithy, Khaled
    2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2017,
  • [10] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)