PANNA 2.0: Efficient neural network interatomic potentials and new architectures

被引:3
|
作者
Pellegrini, Franco [1 ]
Lot, Ruggero [1 ]
Shaidu, Yusuf [1 ,2 ,3 ]
Kucukbenli, Emine [4 ,5 ]
机构
[1] Scuola Int Super Studi Avanzati, Trieste, Italy
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Nvidia Corp, Santa Clara, CA 95051 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 08期
关键词
SIMULATIONS;
D O I
10.1063/5.0158075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better graphics processing unit support including a fast descriptor calculator, new plugins for external codes, and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Reversible densification and cooperative atomic movement induced "compaction" in vitreous silica: a new sight from deep neural network interatomic potentials
    Qi, Yongnian
    Guo, Xiaoguang
    Wang, Hao
    Zhang, Shuohua
    Li, Ming
    Zhou, Ping
    Guo, Dongming
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (23) : 9515 - 9532
  • [32] Evaluating the applicability of classical and neural network interatomic potentials for modeling body centered cubic polymorph of magnesium
    Troncoso, Javier
    Turlo, Vladyslav
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2022, 30 (04)
  • [33] NEW OPTICAL METHOD FOR DETERMINATION OF INTERATOMIC POTENTIALS
    BEHMENBURG, W
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1972, A 27 (01): : 31 - +
  • [34] Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
    Ghasemi, S. Alireza
    Hofstetter, Albert
    Saha, Santanu
    Goedecker, Stefan
    PHYSICAL REVIEW B, 2015, 92 (04):
  • [35] Non-standard neural network architectures in the analysis of auditory brainstem response potentials
    Izworski, A
    Tadeusiewicz, R
    Paslawski, A
    FIRST INTERNATIONAL CONFERENCE ON ADVANCES IN MEDICAL SIGNAL AND INFORMATION PROCESSING, 2000, (476): : 184 - 191
  • [36] Neural network architectures: New strategies for real time problems
    Ugena, A
    De Arriaga, F
    El Alami, M
    INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATION TECHNOLOGIES : EXPLORING EMERGING TECHNOLOGIES, 2001, : 247 - 253
  • [37] Some new neural network architectures with improved learning schemes
    Sinha M.
    Kumar K.
    Kalra P.K.
    Soft Computing, 2000, 4 (4) : 214 - 223
  • [38] Towards universal neural network interatomic potential
    Takamoto, So
    Okanohara, Daisuke
    Li, Qing-Jie
    Li, Ju
    JOURNAL OF MATERIOMICS, 2023, 9 (03) : 447 - 454
  • [39] Neural network Architectures and learning
    Wilamowski, BM
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : TU1 - TU12
  • [40] Lattices of neural network architectures
    Holena, Martin
    Neural Network World, 1994, 4 (04) : 435 - 464