PANNA 2.0: Efficient neural network interatomic potentials and new architectures

被引:3
|
作者
Pellegrini, Franco [1 ]
Lot, Ruggero [1 ]
Shaidu, Yusuf [1 ,2 ,3 ]
Kucukbenli, Emine [4 ,5 ]
机构
[1] Scuola Int Super Studi Avanzati, Trieste, Italy
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Nvidia Corp, Santa Clara, CA 95051 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 08期
关键词
SIMULATIONS;
D O I
10.1063/5.0158075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better graphics processing unit support including a fast descriptor calculator, new plugins for external codes, and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] PANNA: Properties from Artificial Neural Network Architectures
    Lot, Ruggero
    Pellegrini, Franco
    Shaidu, Yusuf
    Kucukbenli, Emine
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
  • [2] SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials
    Lee, Kyuhyun
    Yoo, Dongsun
    Jeong, Wonseok
    Han, Seungwu
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 242 : 95 - 103
  • [3] Multidimensional Neural Network Interatomic Potentials for CO on NaCl(100)
    Sinha, Shreya
    Mladineo, Bruno
    Lončarić, Ivor
    Saalfrank, Peter
    Journal of Physical Chemistry C, 2024, 128 (49): : 21117 - 21131
  • [4] Transfer learning for chemically accurate interatomic neural network potentials
    Zaverkin, Viktor
    Holzmueller, David
    Bonfirraro, Luca
    Kaestner, Johannes
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (07) : 5383 - 5396
  • [5] An automated approach for developing neural network interatomic potentials with FLAME
    Mirhosseini, Hossein
    Tahmasbi, Hossein
    Kuchana, Sai Ram
    Ghasemi, S. Alireza
    Kuehne, Thomas D.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [6] Data efficiency and extrapolation trends in neural network interatomic potentials
    Vita J.A.
    Schwalbe-Koda D.
    Machine Learning: Science and Technology, 2023, 4 (03):
  • [7] Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
    Zaverkin, Viktor
    Holzmueller, David
    Steinwart, Ingo
    Kaestner, Johannes
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6658 - 6670
  • [8] LAMMPS implementation of rapid artificial neural network derived interatomic potentials
    Dickel, D.
    Nitol, M.
    Barrett, C. D.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 196
  • [9] Synthetic pre-training for neural-network interatomic potentials
    Gardner, John L. A.
    Baker, Kathryn T.
    Deringer, Volker L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [10] Implementing a neural network interatomic model with performance portability for emerging exascale architectures
    Desai, Saaketh
    Reeve, Samuel Temple
    Belak, James F.
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 270