Fitted modifications of Runge-Kutta-Nystrom pairs of orders 7(5) for addressing oscillatory problems

被引:8
|
作者
Kovalnogov, Vladislav N. [1 ]
Kornilova, Maria, I [1 ]
Khakhalev, Yuri A. [1 ]
Generalov, Dmitry A. [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Univ Western Macedonia, Dept Math, Kastoria 52100, Greece
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Dept, Euboea 34400, Psahna, Greece
关键词
initial value problem; numerical solution; periodic problems; Runge-Kutta-Nystrom;
D O I
10.1002/mma.8510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Runge-Kutta-Nystrom pair of orders 7(5) using six stages per step have been discovered very recently. Here we modify four of its weights. The resulting method integrates exactly the harmonic oscillator psi ''=-mu(2)psi,mu is an element of R, which serves as model problem. The new weights are O(mu(2)) perturbations of the original ones. Order reduction which is usually present in such modifications is avoided. Numerical results over standard six stages pairs justify our efforts.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 50 条
  • [21] An embedded explicit Runge-Kutta-Nystrom method for solving oscillatory problems
    Senu, N.
    Suleiman, M.
    Ismail, F.
    PHYSICA SCRIPTA, 2009, 80 (01)
  • [22] High order Runge-Kutta-Nystrom codes for the integration of oscillatory problems
    García, A
    Martín, P
    González, AB
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (01) : 13 - 25
  • [23] Symmetric and symplectic exponentially fitted Runge-Kutta-Nystrom methods for Hamiltonian problems
    You, Xiong
    Chen, Bingzhen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 94 : 76 - 95
  • [24] A FOURTH ORDER IMPLICIT SYMMETRIC AND SYMPLECTIC EXPONENTIALLY FITTED RUNGE-KUTTA-NYSTROM METHOD FOR SOLVING OSCILLATORY PROBLEMS
    Zhai, Wenjuan
    Chen, Bingzhen
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2019, 9 (01): : 71 - 84
  • [25] Runge-Kutta-Nystrom Pairs of Orders 8(6) for Use in Quadruple Precision Computations
    Kovalnogov, Vladislav N.
    Matveev, Alexander F.
    Generalov, Dmitry A.
    Karpukhina, Tamara V.
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICS, 2023, 11 (04)
  • [26] Embedded exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of orbital problems
    Van de Vyver, Hans
    NEW ASTRONOMY, 2006, 11 (08) : 577 - 587
  • [27] Runge-Kutta-Nystrom methods of eighth order for addressing Linear Inhomogeneous problems
    Kovalnogov, V. N.
    Fedorov, R. V.
    Karpukhina, M. T.
    Kornilova, M. I.
    Simos, T. E.
    Tsitouras, Ch.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
  • [28] Multidimensional adapted Runge-Kutta-Nystrom methods for oscillatory systems
    Wu, Xinyuan
    Wang, Bin
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) : 1955 - 1962
  • [29] A Phase- and Amplification-Fitted 5(4) Diagonally Implicit Runge-Kutta-Nystrom Pair for Oscillatory Systems
    Demba, Musa Ahmed
    Senu, Norazak
    Ramos, Higinio
    Kumam, Poom
    Watthayu, Wiboonsak
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (03)
  • [30] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185