In vivo evolution of antimicrobial resistance in a biofilm model of Pseudomonas aeruginosa lung infection

被引:1
|
作者
Higazy, Doaa [1 ,2 ,3 ]
Pham, Anh Duc [4 ]
van Hasselt, Coen [4 ]
Hoiby, Niels [1 ,3 ]
Jelsbak, Lars [5 ]
Moser, Claus [1 ,3 ]
Ciofu, Oana [1 ,6 ]
机构
[1] Univ Copenhagen, Costerton Biofilm Ctr, Dept Immunol & Microbiol, DK-2200 Copenhagen N, Denmark
[2] Cairo Univ, Dept Microbiol, Giza 12613, Egypt
[3] Univ Copenhagen, Dept Clin Microbiol, DK-2100 Copenhagen O, Denmark
[4] Leiden Univ, Leiden Acad Ctr Drug Res, Div Syst Pharmacol & Pharm, NL-2300 RA Leiden, Netherlands
[5] Tech Univ Denmark, Dept Biotechnol & Biomed, DK-2800 Lyngby, Denmark
[6] Panum Inst, Costerton Biofilm Ctr, Dept Immunol & Microbiol, 24-1 Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
来源
ISME JOURNAL | 2024年 / 18卷 / 01期
关键词
Pseudomonas aeruginosa; biofilm; in vivo evolution; antimicrobial resistance; inflammatory response; CYSTIC-FIBROSIS; CIPROFLOXACIN; ADAPTATION;
D O I
10.1093/ismejo/wrae036
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The evolution of antimicrobial resistance (AMR) in biofilms has been repeatedly studied by experimental evolution in vitro, but rarely in vivo. The complex microenvironment at the infection site imposes selective pressures on the bacterial biofilms, potentially influencing the development of AMR. We report here the development of AMR in an in vivo mouse model of Pseudomonas aeruginosa biofilm lung infection. The P. aeruginosa embedded in seaweed alginate beads underwent four successive lung infection passages with or without ciprofloxacin (CIP) exposure. The development of CIP resistance was assessed at each passage by population analysis of the bacterial populations recovered from the lungs of CIP-treated and control mice, with subsequent whole-genome sequencing of selected isolates. As inflammation plays a crucial role in shaping the microenvironment at the infection site, its impact was explored through the measurement of cytokine levels in the lung homogenate. A rapid development of AMR was observed starting from the second passage in the CIP-treated mice. Genetic analysis revealed mutations in nfxB, efflux pumps (mexZ), and two-component systems (parS) contribution to CIP resistance. The control group isolates exhibited mutations in the dipA gene, likely associated with biofilm dispersion. In the initial two passages, the CIP-treated group exhibited an elevated inflammatory response compared to the control group. This increase may potentially contribute to the release of mutagenic reactive oxygen species and the development of AMR. In conclusion, this study illustrates the complex relationship between infection, antibiotic treatment, and immune response.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [31] The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions
    Jochumsen, Nicholas
    Marvig, Rasmus L.
    Damkiaer, Soren
    Jensen, Rune Lyngklip
    Paulander, Wilhelm
    Molin, Soren
    Jelsbak, Lars
    Folkesson, Anders
    NATURE COMMUNICATIONS, 2016, 7
  • [32] The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions
    Nicholas Jochumsen
    Rasmus L. Marvig
    Søren Damkiær
    Rune Lyngklip Jensen
    Wilhelm Paulander
    Søren Molin
    Lars Jelsbak
    Anders Folkesson
    Nature Communications, 7
  • [33] Evolution of the antimicrobial resistance of Pseudomonas aeruginosa in Spain:: Second National Study (2003)
    Sanchez-Romero, I.
    Cercenado, E.
    Cuevas, O.
    Garcia-Escribano, N.
    Garcia-Martinez, J.
    Bouza, E.
    REVISTA ESPANOLA DE QUIMIOTERAPIA, 2007, 20 (02) : 222 - 229
  • [34] Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples
    de Sousa, Telma
    Hebraud, Michel
    Alves, Olimpia
    Costa, Eliana
    Maltez, Luis
    Pereira, Jose Eduardo
    Martins, Angela
    Igrejas, Gilberto
    Poeta, Patricia
    MICROORGANISMS, 2023, 11 (05)
  • [35] Evaluation of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa isolates in Farabi Hospital
    Saffari, Mahmood
    Karami, Shabnam
    Firoozeh, Farzaneh
    Sehat, Mojtaba
    JOURNAL OF MEDICAL MICROBIOLOGY, 2017, 66 (07) : 905 - 909
  • [36] Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa
    Yamani, Lamya
    Alamri, Aisha
    Alsultan, Afnan
    Alfifi, Somaya
    Ansari, Mohammad Azam
    Alnimr, Amani
    MICROBIAL PATHOGENESIS, 2021, 157
  • [37] Microcolony formation:: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung
    Sriramulu, DD
    Lünsdorf, H
    Lam, JS
    Römling, U
    JOURNAL OF MEDICAL MICROBIOLOGY, 2005, 54 (07) : 667 - 676
  • [38] In vivo evolution of resistance of Pseudomonas aeruginosa strains isolated from patients admitted to an intensive care unit: mechanisms of resistance and antimicrobial exposure
    Sole, Mar
    Fabrega, Anna
    Cobos-Trigueros, Nazaret
    Zamorano, Laura
    Ferrer-Navarro, Mario
    Balleste-Delpierre, Clara
    Reustle, Anna
    Castro, Pedro
    Maria Nicolas, Jose
    Oliver, Antonio
    Antonio Martinez, Jose
    Vila, Jordi
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2015, 70 (11) : 3004 - 3013
  • [39] Bactericidal effect of Iberin combined with photodynamic antimicrobial chemotherapy against Pseudomonas aeruginosa biofilm cultured on ex vivo wound model
    Dahshan, Nisreen A.
    Abu-Dahab, Rana
    Khalil, Enam A.
    Al-Bakri, Amal G.
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2023, 44
  • [40] Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: Quantitative comparative analysis using a rabbit ear model
    Seth, Akhil K.
    Zhong, Aimei
    Nguyen, Khang T.
    Hong, Seok J.
    Leung, Kai P.
    Galiano, Robert D.
    Mustoe, Thomas A.
    WOUND REPAIR AND REGENERATION, 2014, 22 (06) : 712 - 719