In vivo evolution of antimicrobial resistance in a biofilm model of Pseudomonas aeruginosa lung infection

被引:1
|
作者
Higazy, Doaa [1 ,2 ,3 ]
Pham, Anh Duc [4 ]
van Hasselt, Coen [4 ]
Hoiby, Niels [1 ,3 ]
Jelsbak, Lars [5 ]
Moser, Claus [1 ,3 ]
Ciofu, Oana [1 ,6 ]
机构
[1] Univ Copenhagen, Costerton Biofilm Ctr, Dept Immunol & Microbiol, DK-2200 Copenhagen N, Denmark
[2] Cairo Univ, Dept Microbiol, Giza 12613, Egypt
[3] Univ Copenhagen, Dept Clin Microbiol, DK-2100 Copenhagen O, Denmark
[4] Leiden Univ, Leiden Acad Ctr Drug Res, Div Syst Pharmacol & Pharm, NL-2300 RA Leiden, Netherlands
[5] Tech Univ Denmark, Dept Biotechnol & Biomed, DK-2800 Lyngby, Denmark
[6] Panum Inst, Costerton Biofilm Ctr, Dept Immunol & Microbiol, 24-1 Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
来源
ISME JOURNAL | 2024年 / 18卷 / 01期
关键词
Pseudomonas aeruginosa; biofilm; in vivo evolution; antimicrobial resistance; inflammatory response; CYSTIC-FIBROSIS; CIPROFLOXACIN; ADAPTATION;
D O I
10.1093/ismejo/wrae036
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The evolution of antimicrobial resistance (AMR) in biofilms has been repeatedly studied by experimental evolution in vitro, but rarely in vivo. The complex microenvironment at the infection site imposes selective pressures on the bacterial biofilms, potentially influencing the development of AMR. We report here the development of AMR in an in vivo mouse model of Pseudomonas aeruginosa biofilm lung infection. The P. aeruginosa embedded in seaweed alginate beads underwent four successive lung infection passages with or without ciprofloxacin (CIP) exposure. The development of CIP resistance was assessed at each passage by population analysis of the bacterial populations recovered from the lungs of CIP-treated and control mice, with subsequent whole-genome sequencing of selected isolates. As inflammation plays a crucial role in shaping the microenvironment at the infection site, its impact was explored through the measurement of cytokine levels in the lung homogenate. A rapid development of AMR was observed starting from the second passage in the CIP-treated mice. Genetic analysis revealed mutations in nfxB, efflux pumps (mexZ), and two-component systems (parS) contribution to CIP resistance. The control group isolates exhibited mutations in the dipA gene, likely associated with biofilm dispersion. In the initial two passages, the CIP-treated group exhibited an elevated inflammatory response compared to the control group. This increase may potentially contribute to the release of mutagenic reactive oxygen species and the development of AMR. In conclusion, this study illustrates the complex relationship between infection, antibiotic treatment, and immune response.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Transcriptome Analysis of Pseudomonas aeruginosa Biofilm Infection in an Ex Vivo Pig Model of the Cystic Fibrosis Lung
    Harrington, Niamh E.
    Littler, Jenny L.
    Harrison, Freya
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2022, 88 (03)
  • [2] Building a better biofilm - Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection
    Harrington, Niamh E.
    Sweeney, Esther
    Harrison, Freya
    [J]. BIOFILM, 2020, 2
  • [4] TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa
    Anke Neidig
    Amy TY Yeung
    Thibaut Rosay
    Beatrix Tettmann
    Nikola Strempel
    Martina Rueger
    Olivier Lesouhaitier
    Joerg Overhage
    [J]. BMC Microbiology, 13
  • [5] TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa
    Neidig, Anke
    Yeung, Amy T. Y.
    Rosay, Thibaut
    Tettmann, Beatrix
    Strempel, Nikola
    Rueger, Martina
    Lesouhaitier, Olivier
    Overhage, Joerg
    [J]. BMC MICROBIOLOGY, 2013, 13
  • [6] In Vivo Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem in Pseudomonas aeruginosa Biofilm Infection
    Wang Hengzhuang
    Wu, Hong
    Ciofu, Oana
    Song, Zhijun
    Hoiby, Niels
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (05) : 2683 - 2690
  • [7] Antimicrobial resistance in Pseudomonas aeruginosa
    Mohanam, Lavanya
    Shanmugam, Priyadarshini
    [J]. MALAYSIAN JOURNAL OF MICROBIOLOGY, 2022, 18 (05) : 571 - 579
  • [8] Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy
    Lynch, Joseph P., III
    Zhanel, George G.
    [J]. SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 43 (02) : 191 - 218
  • [9] Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives
    Jimenez-Guerra, Gemma
    Heras-Canas, Victor
    Gutierrez-Soto, Miguel
    del Pilar Aznarte-Padial, Maria
    Exposito-Ruiz, Manuela
    Maria Navarro-Mari, Jose
    Gutierrez-Fernandez, Jose
    [J]. JOURNAL OF MEDICAL MICROBIOLOGY, 2018, 67 (06) : 790 - 797
  • [10] Pseudomonas aeruginosa: Pathogenicity and antimicrobial resistance in urinary tract infection
    Paz Zarza, Victor Manuel
    Mangwani Mordani, Simran
    Martinez Maldonado, Alejandra
    Alvarez Hernandez, Diego
    Sandra Georgina, Solano-Galvez
    Vazquez-Lopez, Rosalino
    [J]. REVISTA CHILENA DE INFECTOLOGIA, 2019, 36 (02): : 180 - 189