Poly(amidoamine) Dendrimer as an Interfacial Dipole Modification in Crystalline Silicon Solar Cells

被引:3
|
作者
Tom, Thomas [1 ,2 ]
Ros, Eloi [3 ]
Lopez-Vidrier, Julian [1 ,2 ]
Asensi, Jose Miguel [1 ,2 ]
Ortega, Pablo [3 ]
Puigdollers, Joaquim [3 ]
Bertomeu, Joan [1 ,2 ]
Voz, Cristobal [3 ]
机构
[1] Univ Barcelona UB, Dept Fis Aplicada, Barcelona 08028, Spain
[2] Inst Nanosci, Nanotechnol IN2UB, Barcelona 08028, Spain
[3] Univ Politecn Catalunya UPC, Dept Engn Elect, Barcelona 08034, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 18期
关键词
FUNCTIONALIZATION; SEMICONDUCTORS; TRANSPORT; SURFACES;
D O I
10.1021/acs.jpclett.3c00643
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(amidoamine) (PAMAM) dendrimers are used to modify the interface of metal-semiconductor junctions. The large number of protonated amines contributes to the formation of a dipole layer, which finally serves to form electron-selective contacts in silicon heterojunction solar cells. By modification of the work function of the contacts, the addition of the PAMAM dendrimer interlayer quenches Fermi level pinning, thus creating an ohmic contact between the metal and the semiconductor. This is supported by the observation of a low contact resistivity of 4.5 m omega cm2, the shift in work function, and the n-type behavior of PAMAM dendrimer films on the surface of crystalline silicon. A silicon heterojunction solar cell containing the PAMAM dendrimer interlayer is presented, which achieved a power conversion efficiency of 14.5%, an increase of 8.3% over the reference device without the dipole interlayer.
引用
收藏
页码:4322 / 4326
页数:5
相关论文
共 50 条
  • [31] Modification of Silicon Surface for Solar Cells
    Druzhinin, Anatoly
    Yerokhov, Valeriy
    Nichkalo, Stepan
    Berezhanskyi, Yevhen
    2015 IEEE 35TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2015, : 249 - 251
  • [32] Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Ceco-2 cells
    Kitchens, Kelly M.
    Kolhatkar, Itohit B.
    Swaan, Peter W.
    Ghandehari, Hamidreza
    MOLECULAR PHARMACEUTICS, 2008, 5 (02) : 364 - 369
  • [33] Corrosion behavior of crystalline silicon solar cells
    Xiong, Huaping
    Gan, Chuanhai
    Yang, Xiaobing
    Hu, Zhigang
    Niu, Haiyan
    Li, Jianfeng
    Si, Jianfang
    Xing, Pengfei
    Luo, Xuetao
    MICROELECTRONICS RELIABILITY, 2017, 70 : 49 - 58
  • [34] Recombination in compensated crystalline silicon for solar cells
    Macdonald, Daniel
    Cuevas, Andres
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
  • [35] Metallization of crystalline silicon solar cells: A Review
    Ebong, Abasifreke
    Chen, Nian
    2012 9TH INTERNATIONAL CONFERENCE ON HIGH CAPACITY OPTICAL NETWORKS AND EMERGING/ENABLING TECHNOLOGIES (HONET), 2012, : 102 - 109
  • [36] Investigation of soldering for crystalline silicon solar cells
    Yang, Hong
    Wang, He
    Cao, Dingyue
    SOLDERING & SURFACE MOUNT TECHNOLOGY, 2016, 28 (04) : 222 - 226
  • [37] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [38] Recent progress in crystalline silicon solar cells
    Tanaka, Makoto
    IEICE ELECTRONICS EXPRESS, 2013, 10 (16):
  • [39] Passivating contacts for crystalline silicon solar cells
    Thomas G. Allen
    James Bullock
    Xinbo Yang
    Ali Javey
    Stefaan De Wolf
    Nature Energy, 2019, 4 : 914 - 928
  • [40] The role of hydrogen for crystalline silicon solar cells
    Shao, Jianbo
    Xi, Xi
    Liu, Guilin
    Luo, Feng
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2023, 25 (5-6): : 228 - 240