Mechanism exploration of Osteoking in the treatment of lumbar disc herniation based on network pharmacology and molecular docking

被引:0
|
作者
Luo, Xinlei [1 ]
Liu, Jingjing [1 ]
Wang, Xiaoxi [1 ]
Chen, Qiaojun [1 ]
Lei, Yanfa [1 ]
He, Zewei [1 ]
Wang, Xiaowei [1 ]
Ye, Yan [1 ]
Na, Qiang [2 ]
Lao, Changtao [2 ]
Yang, Zhengchang [1 ]
Jiang, Jun [1 ]
机构
[1] Southern Cent Hosp Yunnan Prov, Dept Spinal Surg, Honghe, Peoples R China
[2] Kunming Med Univ, Affiliated Hosp 6, Dept Orthoped, Yuxi, Peoples R China
关键词
Osteoking; Lumbar disc herniation; Network pharmacology; Molecular docking; HUMAN INTERVERTEBRAL DISC; NUCLEUS PULPOSUS; TNF-ALPHA; CELLS; EXPRESSION; INJECTION;
D O I
10.1186/s13018-024-04570-w
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
ObjectiveLumbar disc herniation (LDH) is a common spinal surgical disease. Low back and leg pain caused by LDH is the main factor leading to functional disability, which has caused a serious burden to patients and society. Osteoking can delay the progression of osteoporosis and osteoarthritis, and even has a significant effect on the prevention of deep vein thrombosis after fracture surgery. In recent years, it has been gradually used in the treatment of LDH and has received significant results. However, the underlying mechanism remains unclear. The aim of this study was to predict the mechanism of Osteoking in the treatment of LDH through network pharmacology and verify it by molecular docking method.MethodsThe TCMSP database was used to collect the relevant active components and targets of Osteoking, while the GeneCards, OMIM and DisGeNET databases were utilized to collect the relevant disease targets of LDH. The Venny 2.1.0 software was employed to obtain the intersecting gene targets of Osteoking and LDH. PPI network construction and core target selection were performed using Cytoscape 3.9.0 software. The Metascape database was used for GO and KEGG enrichment analysis of the relevant targets. Finally, molecular docking was conducted using AutoDock software.ResultsThe study identified 116 potential targets and 26 core targets for the treatment of LDH with Osteoking. Pathways in cancer, Alzheimer's disease, microRNAs in cancer and the IL-17 signalling pathway were among the main involved signalling pathways. Molecular docking results demonstrated that the key targets AKT1, IL-6, ALB, TNF and IL-1 beta exhibited relatively stable binding activities with the main active components of Osteoking.ConclusionsOsteoking can alleviate the symptoms of lumbar disc herniation through the modulation of multiple targets and signalling pathways.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking
    Yang, Panpan
    Chai, Yihong
    Wei, Min
    Ge, Yan
    Xu, Feixue
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking
    Zhang, Yajing
    Zhao, Zirui
    Li, Wenlong
    Tang, Yuanhu
    Wang, Shujie
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (08) : 6564 - 6582
  • [23] Mechanism of Radix Scutellariae in the treatment of influenza A based on network pharmacology and molecular docking
    Li, Qing
    Liu, Yuntao
    Yang, Min
    Jin, Lianshun
    Wu, Yali
    Tang, Lijuan
    He, Liuyun
    Wu, Dinghong
    Zhang, Zhongde
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [24] Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking
    Xiaoling Li
    Baixin Lin
    Zhiping Lin
    Yucui Ma
    Qu Wang
    Yushi Zheng
    Liao Cui
    Hui Luo
    Lianxiang Luo
    Scientific Reports, 11
  • [25] Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking
    Li, Xiaoling
    Lin, Baixin
    Lin, Zhiping
    Ma, Yucui
    Wang, Qu
    Zheng, Yushi
    Cui, Liao
    Luo, Hui
    Luo, Lianxiang
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] Mechanisms of Intervertebral Disc Degeneration Treatment with Deer Antlers Based on Network Pharmacology and Molecular Docking
    Weng, Rui
    Lin, Hongheng
    Li, Zhuoyao
    Chen, Daman
    Lin, Xiaoxiao
    Zhang, Zhenyu
    Chen, Qiqi
    Yao, Yiqi
    Li, Wenchao
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [27] Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking
    Zhao, Yilong
    Liu, Bohao
    Li, Yixing
    Chen, Zhe
    Zhu, Xingzhuo
    Tao, Runyi
    Wang, Zhiyu
    Wang, Hongyi
    Zhang, Yanpeng
    Yan, Shuguang
    Gong, Qiuyu
    Zhang, Guangjian
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (27) : 2161 - 2176
  • [28] Network pharmacology- and molecular docking-based exploration of the molecular mechanism underlying Jianpi Yiwei Recipe treatment of gastric cancer
    Chen, Peng
    Wu, Huan-Yu
    WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2024, 16 (07)
  • [29] Exploration of Gancao Xiexin decoction for treatment of Behcet disease based on network pharmacology and molecular docking
    Zhang, Xin
    MEDICINE, 2022, 101 (42) : E31277
  • [30] TO EXPLORE THE MECHANISM OF POLYGONATUM IN THE TREATMENT OF RHEUMATOID ARTHRITIS BASED ON NETWORK PHARMACOLOGY AND MOLECULAR DOCKING
    Chen, Ying
    Tian, Hao
    Ma, Qin
    Yang, Lunzhi
    Zhou, Xue
    Xiao, Ting
    Tao, Ling
    Wu, Linjing
    MEDICINE, 2023, 102 (30) : 85 - 85