Wide-Bandgap Nickel Oxide with Tunable Acceptor Concentration for Multidimensional Power Devices

被引:8
|
作者
Ma, Yunwei [1 ]
Qin, Yuan [1 ]
Porter, Matthew [1 ]
Spencer, Joseph [1 ,2 ]
Du, Zhonghao [3 ]
Xiao, Ming [1 ]
Wang, Boyan [1 ]
Wang, Yifan [1 ]
Jacobs, Alan G. [2 ]
Wang, Han [4 ]
Tadjer, Marko [2 ]
Zhang, Yuhao [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Ctr Power Elect Syst CPES, Blacksburg, VA 24060 USA
[2] US Naval Res Lab, Washington, DC 20375 USA
[3] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[4] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
基金
美国国家科学基金会;
关键词
gallium oxide; high voltage; nickel oxide; power electronics; power semiconductor devices; ultra-wide bandgap; wide-bandgap; BARRIER DIODES; KV; GAN; MOSFETS;
D O I
10.1002/aelm.202300662
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multidimensional power devices can achieve performance beyond conventional limits by deploying charge-balanced p-n junctions. A key obstacle to developing such devices in many wide-bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors is the difficulty of native p-type doping. Here the WBG nickel oxide (NiO) as an alternative p-type material is investigated. The acceptor concentration (N-A) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p-n(+) heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunable N-A from < 10(18) cm(-3) to 2x10(18) cm(-3) with the practical breakdown field (E-B) of 3.8 to 6.3 MV cm(-1). This N-A range allows for charge balance to n-type region with reasonable process latitude, and E-B is high enough to pair with many WBG and UWBG semiconductors. The extracted N-A is then used to design a multidimensional Ga2O3 diode with NiO field-modulation structure. The diodes fabricated with two different N-A both achieve 8000 V breakdown voltage and 4.7 MV cm(-1) average electric field. This field is over three times higher than the best report in prior multi-kilovolt lateral devices. These results show the promise of p-type NiO for pushing the performance limits of power devices.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] ELECTROLUMINESCENCE OF WIDE-BANDGAP CHEMICALLY TUNABLE CYCLIC CONJUGATED POLYMERS
    GREM, G
    LEISING, G
    SYNTHETIC METALS, 1993, 57 (01) : 4105 - 4110
  • [22] GaN-Based Wide-Bandgap Power Switching Devices: From Atoms to the Grid
    Atcitty, Stanley
    Kaplar, Robert
    DasGupta, Sandeepan
    Marinella, Matthew
    Armstrong, Andrew
    Biedermann, Laura
    Sun, Min
    Palacios, Tomas
    Smith, Mark
    GALLIUM NITRIDE AND SILICON CARBIDE POWER TECHNOLOGIES 2, 2012, 50 (03): : 199 - 209
  • [23] Radiation resistance of wide-bandgap semiconductor power transistors
    Hazdra, Pavel
    Popelka, Stanislav
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (04):
  • [24] Barriers to the Adoption of Wide-Bandgap Semiconductors for Power Electronics
    Kizilyalli, I. C.
    Carlson, E. P.
    Cunningham, D. W.
    2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2018,
  • [25] Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices
    L. J. Brillson
    G. M. Foster
    J. Cox
    W. T. Ruane
    A. B. Jarjour
    H. Gao
    H. von Wenckstern
    M. Grundmann
    B. Wang
    D. C. Look
    A. Hyland
    M. W. Allen
    Journal of Electronic Materials, 2018, 47 : 4980 - 4986
  • [26] Towards Lightweight Magnetic Components for Converters with Wide-bandgap Devices
    Calderon-Lopez, G.
    Todd, R.
    Forsyth, A. J.
    Wang, J.
    Wang, W.
    Yuan, X.
    Aldhaher, S.
    Kwan, C.
    Yates, D.
    Mitcheson, P. D.
    2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 3149 - 3155
  • [27] Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices
    Brillson, L. J.
    Foster, G. M.
    Cox, J.
    Ruane, W. T.
    Jarjour, A. B.
    Gao, H.
    Von Wenckstern, H.
    Grundmann, M.
    Wang, B.
    Look, D. C.
    Hyland, A.
    Allen, M. W.
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (09) : 4980 - 4986
  • [28] Electromagnetic Interference Mitigation in Wide-Bandgap Power Conversion
    Bhalla, Anup
    IEEE POWER ELECTRONICS MAGAZINE, 2019, 6 (02): : 32 - 35
  • [29] High-Performance, Wide-Bandgap Power Electronics
    Ty McNutt
    Brandon Passmore
    John Fraley
    Brice McPherson
    Robert Shaw
    Kraig Olejniczak
    Alex Lostetter
    Journal of Electronic Materials, 2014, 43 : 4552 - 4559
  • [30] A New Hands-On Course in Characterization of Wide-Bandgap Devices
    Zhang, Zheyu
    Tolbert, Leon M.
    Costinett, Daniel
    Wang, Fei
    Blalock, Benjamin J.
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (10) : 9392 - 9403