rRNA intermediates coordinate the formation of nucleolar vacuoles in C. elegans

被引:4
|
作者
Xu, Demin [1 ]
Chen, Xiangyang [1 ]
Kuang, Yan [1 ]
Hong, Minjie [1 ]
Xu, Ting [1 ]
Wang, Ke [1 ]
Huang, Xinya [1 ]
Fu, Chuanhai [1 ]
Ruan, Ke [1 ]
Zhu, Chengming [1 ]
Feng, Xuezhu [1 ]
Guang, Shouhong [1 ,2 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp USTC 1, USTC RNA Inst,Div Life Sci & Med,Biomed Sci & Hlth, Sch Life Sci,Dept Obstet & Gynecol,Minist Educ,Key, Hefei 230027, Anhui, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Mol Cell Sci, Hefei 230027, Anhui, Peoples R China
来源
CELL REPORTS | 2023年 / 42卷 / 08期
基金
中国国家自然科学基金;
关键词
PHASE-SEPARATION; NUCLEAR RNAI; CELLS; PROTEIN; VACUOLATION; SIRNAS; SIZE; ORGANIZATION; ACTIVATION; TRANSITION;
D O I
10.1016/j.celrep.2023.112915
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The nucleolus is the most prominent membraneless organelle within the nucleus. How the nucleolar structure is regulated is poorly understood. Here, we identified two types of nucleoli in C. elegans. Type I nucleoli are spherical and do not have visible nucleolar vacuoles (NoVs), and rRNA transcription and processing factors are evenly distributed throughout the nucleolus. Type II nucleoli contain vacuoles, and rRNA transcription and processing factors exclusively accumulate in the periphery rim. The NoV contains nucleoplasmic pro-teins and is capable of exchanging contents with the nucleoplasm. The high-order structure of the nucleolus is dynamically regulated in C. elegans. Faithful rRNA processing is important to prohibit NoVs. The depletion of 27SA2 rRNA processing factors resulted in NoV formation. The inhibition of RNA polymerase I (RNAPI) tran-scription and depletion of two conserved nucleolar factors, nucleolin and fibrillarin, prohibits the formation of NoVs. This finding provides a mechanism to coordinate structure maintenance and gene expression.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] C. elegans Embryonic Morphogenesis
    Vuong-Brender, Thanh T. K.
    Yang, Xinyi
    Labouesse, Michel
    ESSAYS ON DEVELOPMENTAL BIOLOGY, PT A, 2016, 116 : 597 - +
  • [42] Mapping Mutations in C. elegans
    Lambie, Eric J.
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 3 - 22
  • [43] Longevity, lipids and C. elegans
    Hulbert, A. J.
    AGING-US, 2011, 3 (02): : 81 - 82
  • [44] Adhesion Energy of C. elegans
    M.W. Keller
    R. Mailler
    K. Adams
    Experimental Mechanics, 2018, 58 : 1281 - 1289
  • [45] The mevalonate pathway in C. elegans
    Manish Rauthan
    Marc Pilon
    Lipids in Health and Disease, 10
  • [46] Gut development in C. elegans
    Maduro, Morris F.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2017, 66 : 3 - 11
  • [47] INNATE IMMUNITY IN C. ELEGANS
    Engelmann, Ilka
    Pujol, Nathalie
    INVERTEBRATE IMMUNITY, 2010, 708 : 105 - 121
  • [48] Axon regeneration in C. elegans
    Hammarlund, Marc
    Jin, Yishi
    CURRENT OPINION IN NEUROBIOLOGY, 2014, 27 : 199 - 207
  • [49] The C. elegans embryonic transcriptome
    Lin Tang
    Nature Methods, 2019, 16 : 1079 - 1079
  • [50] The C. elegans embryonic transcriptome
    Tang, Lei
    NATURE METHODS, 2019, 16 (11) : 1079 - 1079