Electrochemical CO2 Reduction by Urea Hangman Mn Terpyridine species

被引:0
|
作者
Li, Minghong [1 ]
Huang, Fang [2 ]
Zhang, Ping [1 ]
Xiong, Ying [1 ]
Zhang, Yaping [1 ]
Li, Fei [3 ]
Chen, Lin [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Mat & Chem, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
[2] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan 250014, Peoples R China
[3] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Homogeneous Catalysis; CO2; reduction; Molecular Catalyst; Electrochemical; Proton Transfer; LOCAL PROTON SOURCE; CARBON-DIOXIDE REDUCTION; ELECTROCATALYTIC REDUCTION; MANGANESE; PROMOTES; PATHWAY;
D O I
10.1002/chem.202304218
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on our previous study in chemical subtleties of the proton tunneling distance for metal hydride formation (PTD-MH) to regulate the selectivity of CO2 reduction reaction (CO2RR), we have developed a family of Mn terpyridine derivatives, in which urea groups functions as multi point hydrogen-bonding hangman to accelerate the reaction rate. We found that such changes to the second coordination sphere significantly increased the turn over frequency (TOF) for CO(2 )reduction to ca.360 s(-1) with this family of molecular catalysts while maintaining high selectivity(ca. 100% +/- 3) for CO even in the presence of a large amount of phenol as proton source. Notably, the compounds studied in this manuscript all exhibit large value for I-cat/I-pas that achieved by Fe porphyrins derivates, while saving up to 0.55 V in over potential with respect to the latter.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Molecular tuning for electrochemical CO2 reduction
    Zhang, Jincheng
    Ding, Jie
    Liu, Yuhang
    Su, Chenliang
    Yang, Hongbin
    Huang, Yanqiang
    Liu, Bin
    JOULE, 2023, 7 (08) : 1700 - 1744
  • [42] Electrochemical reduction of CO2 at metallic electrodes
    Augustynski, J
    Kedzierzawski, P
    Jermann, B
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 107 - 116
  • [43] Recent advances in electrochemical reduction of CO2
    Zhang, Fengtao
    Zhang, Hongye
    Liu, Zhimin
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 77 - 84
  • [44] Modulating electrochemical CO2 reduction at interfaces
    Zhang, Jie
    Pan, Binbin
    Li, Yanguang
    SCIENCE BULLETIN, 2022, 67 (18) : 1844 - 1848
  • [45] Modeling Operando Electrochemical CO2 Reduction
    Dattila, Federico
    Seemakurthi, Ranga Rohit
    Zhou, Yecheng
    Lopez, Nuria
    CHEMICAL REVIEWS, 2022, 122 (12) : 11085 - 11130
  • [46] Electrochemical CO2 reduction: Predicting the selectivity
    Albrechtsen, Michael Mirabueno
    Bagger, Alexander
    CURRENT OPINION IN ELECTROCHEMISTRY, 2025, 50
  • [47] Electrochemical CO2 Reduction: A Classification Problem
    Bagger, Alexander
    Ju, Wen
    Sofia Varela, Ana
    Strasser, Peter
    Rossmeisl, Jan
    CHEMPHYSCHEM, 2017, 18 (22) : 3266 - 3273
  • [48] Carbonaceous materials for electrochemical CO2 reduction
    Li, Leigang
    Huang, Yang
    Li, Yanguang
    ENERGYCHEM, 2020, 2 (01)
  • [49] Electrochemical Reduction of CO2 at Copper Nanofoams
    Sen, Sujat
    Liu, Dan
    Palmore, G. Tayhas R.
    ACS CATALYSIS, 2014, 4 (09): : 3091 - 3095
  • [50] Integrated electrochemical CO2 reduction and hydroformylation
    Jolly, Brandon J.
    Pung, Michael J.
    Liu, Chong
    DALTON TRANSACTIONS, 2024, 53 (47) : 18834 - 18838