On zeros of quasi-orthogonal Meixner polynomials

被引:0
|
作者
Jooste, Alta [1 ]
Jordaan, Kerstin [2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Univ South Africa, Dept Decis Sci, ZA-0003 Pretoria, South Africa
来源
关键词
Meixner polynomials; discrete orthogonal polynomials; quasi-orthogonality; interlacing; 2010 AMS Classification: 33C45; 42C05; QUADRATURE; RULES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each fixed value of beta in the range 2 < beta < -1 and 0 < c < 1, we investigate interlacing properties of the zeros of polynomials of consecutive degree for M-n ( x; beta, c) and M-k (x, beta broken vertical bar t, c), k subset of [n 1, n, n broken vertical bar 1] and t is an element of{0,1,2}. We prove the conjecture in [9] on a lower bound for the first positive zero of the quasi-orthogonal order 1 polynomial M-n( x; beta + 1, c) and identify upper and lower bounds for the first few zeros of quasi-orthogonal order 2 Meixner polynomials M-n( x; beta, c). We show that a sequence of Meixner polynomials f M-n (x; beta, c)(infinity) (n=3) with 2 < beta< 1 and 0 < c < 1 cannot be orthogonal with respect to any positive measure by proving that the zeros of Mn- 1( x;beta, c) and M-n (x; beta, c) do not interlace for any n is an element of N >= 3.
引用
收藏
页码:48 / 56
页数:9
相关论文
共 50 条
  • [31] Discriminants of classical quasi-orthogonal polynomials with application to Diophantine equations
    SAwA, Masanori
    Uchida, Yukihiro
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) : 831 - 860
  • [32] Δ-Meixner-Sobolev orthogonal polynomials: Mehler-Heine type formula and zeros
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 228 - 234
  • [33] Sobolev Orthogonal Polynomials Generated by Meixner Polynomials
    Sharapudinov, I. I.
    Gadzhieva, Z. D.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (03): : 310 - 321
  • [34] On quasi-orthogonal cocycles
    Armario, J. A.
    Flannery, D. L.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (08) : 401 - 411
  • [35] Quasi-Orthogonal Supersets
    Popovic, Branislav M.
    [J]. 2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [36] On the asymptotics of the Meixner-Pollaczek polynomials and their zeros
    Li, X
    Wong, R
    [J]. CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) : 59 - 90
  • [37] Exceptional Meixner and Laguerre orthogonal polynomials
    Duran, Antonio J.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2014, 184 : 176 - 208
  • [38] Quasi-orthogonal sequences
    Matsufuji, S
    Takatsukasa, K
    Watanabe, Y
    Kuroyanagi, N
    Suehiro, N
    [J]. 2001 IEEE THIRD WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, PROCEEDINGS, 2001, : 255 - 258
  • [39] ON QUASI-ORTHOGONAL NUMBERS
    TAUBER, S
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (05): : 365 - &
  • [40] RECONSTRUCTION OF SPARSE POLYNOMIALS VIA QUASI-ORTHOGONAL MATCHING PURSUIT METHOD
    Feng, Renzhong
    Huang, Aitong
    Lai, Ming -Jun
    Shen, Zhaiming
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (01) : 18 - 38