Rational quadratic trigonometric spline fractal interpolation functions with variable scalings

被引:3
|
作者
Vijay, A. K. B. [1 ]
Chand, A. K. B. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
来源
关键词
MONOTONE; PARAMETERS;
D O I
10.1140/epjs/s11734-023-00780-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractal interpolation function (FIF) constructed through an iterated function system is more versatile than any classical spline interpolation. In this paper, we propose a novel C-1-rational quadratic trigonometric spline FIF with variable scaling, where the numerator and denominator of rational function are quadratic trigonometric polynomials with two shape parameters in every subinterval. The error and convergence analysis of the proposed rational trigonometric fractal interpolant are studied for data generating function in C-3. We deduce sufficient conditions based on the parameters of the rational quadratic trigonometric spline FIF to preserve positivity, monotonicity, and range restrictions features of the concerned data sets. Numerical examples are presented to supplement the shape preserving results based on a restricted class of scaling functions and minimum values of the shape parameters.
引用
收藏
页码:1001 / 1013
页数:13
相关论文
共 50 条
  • [41] A scheme for interpolation with trigonometric spline curves
    Juhasz, Imre
    Roth, Agoston
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 246 - 261
  • [42] The Cubic Trigonometric Automatic Interpolation Spline
    Juncheng Li
    Laizhong Song
    Chengzhi Liu
    IEEE/CAAJournalofAutomaticaSinica, 2018, 5 (06) : 1136 - 1141
  • [43] Trigonometric spline for medical image interpolation
    Abbas, Samreen
    Hussain, Malik Zawwar
    Irshad, Misbah
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2017, 45 (01): : 33 - 40
  • [44] The Cubic Trigonometric Automatic Interpolation Spline
    Li, Juncheng
    Song, Laizhong
    Liu, Chengzhi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (06) : 1136 - 1141
  • [45] A quadratic trigonometric spline for curve modeling
    Samreen, Shamaila
    Sarfraz, Muhammad
    Hussain, Malik Zawwar
    PLOS ONE, 2019, 14 (01):
  • [46] Computer Aided Design using a Rational Quadratic Trigonometric Spline with Interval Shape Control
    Samreen, Shamaila
    Sarfraz, Muhammad
    Jabeen, Nabila
    Hussain, Malik Zawwar
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 246 - 251
  • [47] NATURAL CUBIC SPLINE COALESCENCE HIDDEN VARIABLE FRACTAL INTERPOLATION SURFACES
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2012, 20 (02) : 117 - 131
  • [48] PERIODIC QUADRATIC SPLINE INTERPOLATION
    DUBEAU, F
    SAVOIE, J
    JOURNAL OF APPROXIMATION THEORY, 1983, 39 (01) : 77 - 88
  • [49] Note on Quadratic Spline Interpolation
    Gao, Shang
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 8, 2009, : 280 - 285
  • [50] QUADRATIC AND CUBIC SPLINE INTERPOLATION
    XIE, SQ
    JOURNAL OF APPROXIMATION THEORY, 1984, 41 (01) : 21 - 28