climate model;
Sao Francisco river;
hydrological model;
large reservoir;
WATER-RESOURCES;
RIVER-BASIN;
UNCERTAINTY;
SYSTEM;
MODEL;
D O I:
10.3390/cli11100201
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
Study region: The Tres Marias 396 MW power plant located on the Sao Francisco River in Brazil. Study focus: Hydropower generation is directly and indirectly affected by climate change. It is also a relevant source of energy for electricity generation in many countries. Thus, methodologies need to be developed to assess the impacts of future climate scenarios. This is essential for effective planning in the energy sector. Energy generation at the Tres Marias power plant was estimated using the water balance of the reservoir and the future stream flow projections to the power plant, for three analysis periods: FUT1 (2011-2040); FUT2 (2041-2070); and FUT3 (2071-2100). The MGB-IPH hydrological model was used to assimilate precipitation and other climatic variables from the regional Eta climatic model, via global models HadGEM2-ES and MIROC5 for scenarios RCP4.5 and RCP8.5. New hydrological insights for the region: The results show considerable reductions in stream flows and consequently, energy generation simulations for the hydropower plant were also reduced. The average power variations for the Eta-MIROC5 model were the mildest, around 7% and 20%, while minimum variations for the Eta-HadGEM2-ES model were approximately 35%, and almost 65% in the worst-case scenario. These results reinforce the urgent need to consider climate change in strategic Brazilian energy planning.
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Wang, Hejia
Xiao, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Xiao, Weihua
Wang, Yicheng
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Wang, Yicheng
Zhao, Yong
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Zhao, Yong
Lu, Fan
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Lu, Fan
Yang, Mingzhi
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Yang, Mingzhi
Hou, Baodeng
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
Hou, Baodeng
Yang, Heng
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R ChinaChina Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China