共 50 条
Qualitative study on diabetic cutaneous wound healing with radiation crosslinked bilayer collagen scaffold in rat model
被引:8
|作者:
Li, Hongwei
[1
]
Chen, Xin
[2
]
Ren, Kang
[1
]
Wu, Lihao
[1
]
Chen, Gong
[1
]
Xu, Ling
[1
,3
]
机构:
[1] Xiamen Univ, Sch Publ Heath, Dept Lab Med, State Key Lab Mol Vaccinol & Mol Diagnost, Xiamen 361102, Peoples R China
[2] Beijing Jishuitan Hosp, Dept Burn, Beijing 100035, Peoples R China
[3] Xiamen Univ, Shenzhen Res Inst, Shenzhen 51800, Peoples R China
关键词:
HYDROGEL;
ANGIOGENESIS;
INFLAMMATION;
CONTRACTION;
SKIN;
D O I:
10.1038/s41598-023-33372-z
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Diabetes may leave patients more prone to skin problems, and minor skin conditions can more easily turn into serious damage to the extracellular matrix, which further impairs the skin's mechanical properties and delays wound healing. Therefore, the aim of the work is to develop extracellular matrix substitution to remodel the mechanical properties of diabetic cutaneous wound and thus accelerate diabetic wound healing. A green fabrication approach was used to prepare radiation crosslinked bilayer collagen scaffold from collagen dispersion. The morphological, mechanical and swelling characteristics of radiation crosslinked bilayer collagen scaffold were assessed to be suitable for cutaneous wound remodeling. The feasibility of radiation crosslinked bilayer collagen scaffold was performed on full-skin defect of streptozotocin-induced diabetic rats. The tissue specimens were harvested after 7, 14, and 21 days. Histopathological analysis showed that radiation crosslinked bilayer collagen scaffold has beneficial effects on inducing skin regeneration and remodeling in diabetic rats. In addition, immunohistochemical staining further revealed that the radiation crosslinked bilayer collagen scaffold could not only significantly accelerate the diabetic wound healing, but also promote angiogenesis factor (CD31) production. Vascularization was observed as early as day 7. The work expands the therapeutic ideas for cutaneous wound healing in diabetes.
引用
收藏
页数:11
相关论文