Theoretical properties of Bayesian Student-t linear regression

被引:3
|
作者
Gagnon, Philippe [1 ]
Hayashi, Yoshiko [2 ]
机构
[1] Univ Montreal, Montreal, PQ, Canada
[2] Osaka Univ Econ, Osaka, Japan
关键词
Built-in robustness; Conflict resolution; Efficiency; Large-sample asymptotics; ROBUSTNESS; MODELS; OUTLIERS; LOCATION;
D O I
10.1016/j.spl.2022.109693
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian Student -t linear regression is a common robust alternative to the normal model, but its theoretical properties are not well understood. We aim to fill some gaps by providing analyses in two different asymptotic scenarios. The results allow to precisely characterize the trade-off between robustness and efficiency controlled through the degrees of freedom (at least asymptotically).(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] State Space Methods for Efficient Inference in Student-t Process Regression
    Solin, Arno
    Sarkka, Sirno
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 885 - 893
  • [42] Stein type confidence interval of the disturbance variance in a linear regression model with multivariate student-t distributed errors
    Nagata, Y
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (02) : 503 - 523
  • [43] Bayesian Inference for State-Space Models With Student-t Mixture Distributions
    Zhang, Tianyu
    Zhao, Shunyi
    Luan, Xiaoli
    Liu, Fei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4435 - 4445
  • [44] Variational Bayesian Approximation Method for Classification and Clustering with a Mixture of Student-t Model
    Mohammad-Djafari, Ali
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 723 - 731
  • [45] A variational Bayesian approach to robust sensor fusion based on Student-t distribution
    Zhu, Hao
    Leung, Henry
    He, Zhongshi
    [J]. INFORMATION SCIENCES, 2013, 221 : 201 - 214
  • [46] Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations
    Ardia, David
    Hoogerheide, Lennart F.
    [J]. R JOURNAL, 2010, 2 (02): : 41 - 47
  • [47] Control and Uncertainty Propagation in the Presence of Outliers by Utilizing Student-t Process Regression
    Papadimitriou, Dimitris
    Sojoudi, Somayeh
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2748 - 2754
  • [48] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Lachos, Victor H.
    Cabral, Celso R. B.
    Prates, Marcos O.
    Dey, Dipak K.
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (01) : 123 - 152
  • [49] BAYESIAN ESTIMATION OF STUDENT-T GARCH MODEL USING LINDLEY'S APPROXIMATION
    Ari, Yakup
    Papadopoulos, Alex
    [J]. ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2019, 53 (01): : 75 - 88
  • [50] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Chen, Zexun
    Wang, Bo
    Gorban, Alexander N.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3005 - 3028