Generalized State of Health Estimation Approach based on Neural Networks for Various Lithium-Ion Battery Chemistries

被引:2
|
作者
Bockrath, Steffen [1 ]
Pruckner, Marco [2 ]
机构
[1] IISB, Fraunhofer Inst Integrated Syst & Device Technol, Schottkystr 10, D-91058 Erlangen, Germany
[2] Univ Wurzburg, Inst Comp Sci, Modeling & Simulat, Am Hubland, D-97074 Wurzburg, Germany
基金
欧盟地平线“2020”;
关键词
Lithium-ion battery; Generalized state of health estimation; Deep learning; Neural network; CHALLENGES;
D O I
10.1145/3575813.3595207
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aging estimation of lithium-ion batteries is a central mission for a safe and efficient handling of lithium-ion batteries over the whole battery lifetime. However, especially the absence of precise diagnostic measurements within real-world applications yields the aging estimation a complex challenge. Moreover, the non-linear aging of lithium-ion batteries is strongly dependent on various operating and environmental conditions and the specific battery cell chemistry. This paper presents a generalized state of health estimation approach based on a neural network that can be used for different lithium-ion battery chemistries. The presented algorithm is able to estimate the aging of lithium-ion batteries by using information obtained from raw sensor data without executing further preprocessing or feature engineering steps. It is firstly shown that the developed temporal convolutional network accurately estimates the state of health for three different lithium-ion battery chemistries by only using high-level parameters from partial charging profiles. In addition, the obtained high-level parameters can provide relevant information needed for a battery passport. The final neural network is trained using transfer learning approaches to model the state of health development of a Lithium-Nickel-Cobalt-Aluminum-Oxide (NCA), a Lithium-Nickel-Cobalt-Manganese-Oxide (NCM) and, an NCM-NCA battery cell. The overall mean absolute percentage error of the generalized state of health estimation is 1.43%.
引用
收藏
页码:314 / 323
页数:10
相关论文
共 50 条
  • [41] State of health estimation of lithium-ion battery considering sensor uncertainty
    Zeng, Yusheng
    Meng, Jinhao
    Peng, Jichang
    Feng, Fei
    Yang, Fangfang
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [42] A Review of Lithium-Ion Battery State of Health Estimation and Prediction Methods
    Yao, Lei
    Xu, Shiming
    Tang, Aihua
    Zhou, Fang
    Hou, Junjian
    Xiao, Yanqiu
    Fu, Zhijun
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03):
  • [43] Advanced Intelligent approach for state of charge estimation of lithium-ion battery
    Kumar, Deepak
    Rizwan, M.
    Panwar, Amrish K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 10661 - 10681
  • [44] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [45] Robust Fuzzy Entropy-Based SOH Estimation for Different Lithium-Ion Battery Chemistries
    Sui, Xin
    He, Shan
    Gismero, Alejandro
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [46] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    Energy, 2021, 236
  • [47] Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks
    Zhang, Shuzhi
    Zhai, Baoyu
    Guo, Xu
    Wang, Kaike
    Peng, Nian
    Zhang, Xiongwen
    JOURNAL OF ENERGY STORAGE, 2019, 26
  • [48] Lithium-ion battery state of charge estimation based on dynamic neural network and Kalman filter
    Chen Kun
    Mao Zhiwei
    Lai Yuehua
    Jiang Zhinong
    Zhang Jinjie
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,
  • [49] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    ENERGY, 2021, 236
  • [50] Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve☆ ☆
    Zhou, Kate Qi
    Qin, Yan
    Yuen, Chau
    JOURNAL OF ENERGY STORAGE, 2024, 100